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candidate predicts the correct volume V = hb2/3 for an ordinary pyramid
(a = 0). Oh, no!

We need new candidates. One way to generate them is first to rewrite the
two families of candidates that passed the a = 0 and b = 0 tests:

V ∼ a2 + b2 = a2 + b2,

V ∼ (a + b)2 = a2 + 2ab + b2,

V ∼ (a − b)2 = a2 − 2ab + b2.

The expanded versions on the right have identical a2 and b2 terms but
differ in the ab term. This variation suggests an idea: that by choosing
the coefficient of ab, the volume might pass all easy-cases tests. Hence the
following three-part divide-and-conquer procedure:

1. Choose the coefficient of a2 to pass the b = 0 test.

2. Choose the coefficient of b2 to pass the a = 0 test. Choosing this coef-
ficient will not prejudice the already passed b = 0 test, because when
b = 0 the b2 term vanishes

3. Finally, choose the coefficient of ab to pass the a = b test. Choosing
this coefficient will not prejudice the already passed b = 0 and a = 0

tests, because in either case ab vanishes.

The result is a volume that passes the three easy-cases tests: a = 0, b = 0,
and a = b.

To pass the b = 0 test, the coefficient of a2 must be 1/3 – the result of
combining six pyramids into a cube. Similarly, to pass the a = 0 test, the
coefficient of b2 must also be 1/3. The resulting family of candidates is:

V =
1

3
h(a2 + nab + b2).

Among this family, one must pass the a = b test. When a = b, the candi-
dates predict

V =
2 + n

3
hb2.

When a = b, the truncated pyramid becomes a rectangular prism with
volume hb2, so the coefficient (2 + n)/3 should be 1. Therefore n = 1, and
the volume of the truncated pyramid is

V =
1

3
h(a2 + ab + b2).
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Problem 2.11 Integration
Use integration to check that V = h(a2 + ab + b2)/3.

Problem 2.12 Triangular pyramid
Instead of a pyramid with a square base, start with a pyramid with an equi-
lateral triangle of side length b as its base. Then make the usual truncated
pyramid by slicing a piece off the top using a plane parallel to the base. If the
top is an equilateral triangle of side length a, and the height is h, what is the
volume of this truncated pyramid? (See also Problem 2.10.)

Problem 2.13 Truncated cone
What is the volume of a truncated cone with a circular base of radius r1 and
circular top of radius r2 (with the top parallel to the base)?

2.4 Drag: Using dimensions and easy cases
Equations often exceed the capabilities of known mathematics, whereupon
easy cases and other street-fighting tools are among the few ways to progress.
As an example, consider the frightening Navier–Stokes equations of fluid
mechanics:

∂v
∂t

+ (v·∇)v = −
1

ρ
∇p + ν∇2v,

where v is the velocity of the fluid (as a function of position and time), ρ is
density, p is pressure, and ν is kinematic viscosity. These equations explain
an amazing variety of phenomena: turbulence, supersonic flight, energy
cost of bicycling, river rapids, and so much else in the world.

Here is a home experiment showing one such phenomena. Photocopy this
page, magnifying it by a factor of 2, and cut out these templates:

1 in

2 in
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Tape together the thickly drawn edges to make one cone
from each template. The cones have the same shape with
the large cone having double the linear dimensions (height
and width) of the small cone.

When the cones are dropped point downward, what is the ap-
proximate ratio of their terminal velocities?

To use the Navier–Stokes equations to predict the terminal velocity of a
cone:

1. Impose boundary conditions, which include the motion of the cone and
the requirement that no fluid (air) enters its paper;

2. Solve the equations together with the continuity equation ∇·v = 0 to
find the pressure and velocity gradient at the surface of the cone;

3. Use the pressure and velocity gradient to find the net force and torque
on the cone;

4. Use the net force and torque to find the motion of the cone, ensuring
that the motion is consistent with the motion assumed in Step 1. This
step is very difficult!

Alas, the Navier–Stokes equation are coupled, nonlinear partial-differential
equations with probably no general solution. Solutions are known only
in particular cases with simple geometry: for example, a sphere moving
very slowly in a viscous fluid, or a sphere moving at any speed in a zero-
viscosity fluid. This solution, valid at any speed, seems general on first
glance. However, a zero-viscosity fluid – what Feynman calls ‘dry water’
[7, Vol. I, Chap. 40] – is a fiction. It would not produce any drag: Drag
arises solely from the dissipation produced by viscosity. Without viscosity,
therefore, the cones in the home experiment would fall freely like a rock or
as if in a vacuum – contrary to everyday experience. So the zero-viscosity
solution cannot help us analyze the falling cones.

Even if our mathematics can someday include viscosity when solving the
high-speed flow around a sphere, there is little hope for solving the com-
plicated flow around an irregular, quivering shape such as a flexible cone
made of paper. These difficulties encourage us to find an alternative ap-
proach.



47 47

47 47

Chapter 2. Easy cases 47

2009-02-10 19:40:05 UTC / rev 4d4a39156f1e

Problem 2.14 Checking dimensions in the Navier–Stokes equations
Check that the first three terms of the Navier–Stokes equations have identical
dimensions.

Problem 2.15 Dimensions of kinematic viscosity
Use the Navier–Stokes equations to deduce the dimensions of kinematic vis-
cosity ν.

2.4.1 Using dimensions

Let’s try our two tools of dimensions and easy cases. A direct approach is to
use these tools to deduce the terminal velocity itself. An indirect approach
is to deduce the drag force as a function of fall speed and then to find the
speed at which the drag balances the weight of the cones. This two-step
approach introduces one new quantity, the drag force, while eliminating
two quantities: the gravitational acceleration and the mass of a cone. It
thereby simplifies the hard step of applying dimensions to a problem with
many quantities.

Problem 2.16 Explaining the simplification
Why the drag force independent of the gravitational acceleration g and the
cone’s mass m (whereas it depends on the shape and size)?

The principle of dimensions is that every term in a valid equation has iden-
tical dimensions. Applied to the drag force F, it means that in the equation

F = f(quantities that affect F),

both sides must have dimensions of force. Let’s find the quantities that
affect F, then combine them to make a quantity with dimensions of force.

On what quantities does the drag depend?

The drag force depends on:

1. v, the speed of the cone;

2. ρ, the density of the fluid;

3. ν, the kinematic viscosity of the fluid;
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4. r, the characteristic size of the cone; and

5. the shape of the cone.

What are the dimensions of these quantities?

To find out how to combine quantities into a force, the first step is to list
their dimensions. Shape – whether an object is square, oblate, etc. – is a
dimensionless concept, so it can appear arbitrarily in the equation

F = f(quantities that affect F).

In other words, dimensions cannot determine how shape affects the drag
force F. So, ignore the effect of shape.

The other quantities have the following dimensions. Size r has dimensions
of L. Speed v has dimensions of LT−1. Density ρ has dimensions of ML−3.
And, as you show in Problem 2.15, viscosity ν has dimensions of L2T−1.

What combinations, if any, of v, ρ, ν, and r have dimensions of force?

The next step is to find all combinations of v, ρ, ν, and r that have dimen-
sions of force. In earlier dimensions examples – free fall (Section 1.2) and
integration (Section 1.3) – only one combination of the relevant quantities
had the correct dimensions. However, in this drag-force problem, the four
quantities v, ρ, ν, and r produce an infinity of combinations with dimen-
sions of force. Here are examples:

F1 = ρv2r2,

F2 = ρνvr,

or meta-combinations such
√

F1F2 or F2
1/F2. Any sum of these meta-combinations

is also a force, so the drag force F might be√
F1F2 +

F2
1

F2

or

F
2/3
1 F

1/3
2 −

F3
1

F2
2

How to decide among these possibilities? We need a method more sophis-
ticated than the hunt-and-peck method of guessing combinations with cor-
rect dimensions.
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To develop the sophisticated approach, return to the first principle of di-
mensions – that you cannot add apples to oranges or, equivalently, that all
terms in an equation have identical dimensions. This principle applies to
all valid equations, including any statement about drag, such as

A + B = C

where the blobs labeled A, B, and C contain the quantities F, v, ρ, ν, and r.

Although the blobs A, B, and C might be absurdly complex functions, they
have identical dimensions. Therefore, make a dimensionless equation by
dividing each term by A:

A

A
+

B

A
=

C

A
.

Therefore, the statement A + B = C can be written in dimensionless form.
The same method of rewriting works for any statement about drag, such
as A = B or A + B − C = D, because all terms must have identical dimen-
sions. Hence any statement about drag force can be rewritten in dimen-
sionless form. For the same reason, this method of rewriting is not limited
to statements about drag. In other words:

Any (true) statement about the world can be written in dimensionless
form.

Any dimensionless expression is composed of dimensionless products of
the variables – called dimensionless groups. Since any true statement can
be written in dimensionless form, and any dimensionless form can be writ-
ten using using dimensionless groups:

All (true) statements about the world can be constructed from dimen-
sionless groups.

Is the free-fall example (Section 1.2) consistent with this principle?

Before applying this principle to the complicated problem of drag, try it
in the simple example of free fall (Section 1.2). The exact impact speed of
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an object dropped from a height h is v =
√

2gh, where g is gravitational
acceleration. This result can indeed be written in the dimensionless form
v/
√

gh =
√

2, and this form uses only the dimensionless group v/
√

gh.
Our new principle passes its first test.

This dimensionless-group analysis of formulas, when reversed, becomes
a method of synthesis: a method for guessing formulas. Let’s warm up
by synthesizing the impact speed v for the free-fall example. First, list the
quantities in the problem, which here are v, g, and h. Second, combine
these quantities into dimensionless groups. Many groups are possible: for
example v/

√
gh, v2/gh, or v4/(gh)2. Third, bring order to these possibil-

ities by looking for the smallest set of sufficient groups. In this case, all
groups can be constructed from one group. The choice of that group is not
constrained by mathematics; however, some choices have simple physical
interpretations. The group v2/gh is also mv2/mgh, where m is the mass
of the falling object. That ratio is, except for a factor of 2, a kinetic energy
divided by a potential energy. So v2/gh measures the relative importance
of kinetic and potential energies. Enchanted by this physical interpretation,
let’s choose v2/gh, rather than v/

√
gh, as the base dimensionless group.

The fourth step, which is where the magic happens, is to construct possible
dimensionless statements. With only one group, the only possible dimen-
sionless statement is

v2

gh
= dimensionless constant.

In other words, v2/gh ∼ 1 or v ∼
√

gh. Using dimensionless groups, we’ve
synthesized a formula for the impact speed.

What’s the use of dimensionless groups?

The hunt-and-pack method of dimensions in Section 1.2 produced the same
formula. So, why bother with the complications of finding dimensionless
groups? They do not help much in simple problems with only one dimen-
sionless group, when any method akin to dimensions will easily synthesize
the only possible formula:

dimensionless group ∼ 1.

However, in problems with more than one dimensionless group – such as
the drag force – the dimensionless-groups method is essential.
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Problem 2.17 Fall time
Synthesize an approximate formula for the fall time (rather than the impact
speed) from the quantities t (fall time), g, and h.

Problem 2.18 Kepler’s third law
Synthesize Kepler’s third law that connects orbital period to orbital radius.
(See also Problem 1.25.)

What dimensionless groups can be constructed for the drag problem?

For the drag problem, form dimensionless groups from among the goal
quantity F and the quantities on which F depends: v, ρ, ν, and r. One
group is F/ρv2r2, as you can check by working out its (lack of) dimensions.
A second group is rv/ν. All groups, it turns out, can be formed from these
two groups (Problem 2.19). With two independent groups, the most gen-
eral dimensionless statement is

one group = f(other group),

where the function f produces a dimensionless value, to match the dimen-
sionless left side.

Which of these two groups belongs on the left side?

The goal is to synthesize a formula for F, and F appears only in the group
F/ρv2r2. So, place that group on the left side rather than wrapping it in
the still-mysterious function f. With this choice, the general form for state-
ments about drag force is

F

ρv2r2
= f

(rv

ν

)
.

Problem 2.19 Only two groups
Show that F, v, ρ, ν, and r produce only two independent dimensionless
groups.

Problem 2.20 How many groups in general?
Is there a general way to determine the number of independent dimensionless
groups? (The answer was given in 1914 by Buckingham [8].)

This sophisticated application of dimensions used the following procedure:
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1. Find the quantities on which F depends.

2. Construct independent dimensionless groups from F and those quanti-
ties.

3. Write the general statement about F in dimensionless form:

group containing F = f(other groups).

The procedure might seem pointless, not having produced a drag force ex-
cept as a formula with an unknown function f. On the one hand, the proce-
dure has greatly improved our chances of finding f. The original problem
required guessing the four-variable function h in F = h(v, ρ, ν, r). Using
dimensions simplifies the problem to guessing a function of only one vari-
able:

F

ρv2r2
= f

(rv

ν

)
.

The magnitude of this simplification is described by the Cambridge statis-
tician and physicist Harold Jeffreys [9, p. 82]:

A good table of functions of one variable may require a page; that of a
function of two variables a volume; that of a function of three variables a
bookcase; and that of a function of four variables a library.

Problem 2.21 Dimensionless groups for the truncated pyramid
The truncated pyramid of Section 2.3 has volume

V =
1

3
h(a2 + ab + b2).

Make dimensionless groups from V , h, a, and b, and rewrite this formula
using the groups. [There are many choices and ways to do so.]

2.4.2 Using easy cases

Greatly improved though our chances may be, they do not look high: Even
the simpler, one-variable drag problem has no exact solution. But, it might
have exact solutions in particular cases. The likely places to look are the
easy cases, the the easiest cases are often extreme cases, so first try extreme
cases.

Extreme cases of what?
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To decide what will take extreme values, look at the general form:

F

ρv2r2
= f

(rv

ν

)
.

The changeable quantity – the input – is rv/ν, so try its extremes. Before
doing so, first figure out the meaning of rv/ν – otherwise one easily lapses
into a mindless game of symbol pushing.

What is the physical interpretation of rv/ν?

This famous combination rv/ν is the Reynolds number – often denoted
Re. To uncover its physical interpretation, look at the terms of the Navier–
Stokes equations and compare the magnitude of the inertial term (v·∇)v
with the magnitude of the viscosity term ν∇2v.

What is the approximate magnitude of (v·∇)v?

The inertial term (v·∇)v has one spatial derivative∇ and two velocities v.
So, using the significant-change approximation (Section 1.4.3):

(v·∇)v ∼
(significant change in flow velocity)2

distance over which flow velocity changes significantly
.

First estimate the numerator. The fluid motion is produced by the cone’s
motion, falling at speed v. Therefore flow velocities near the cone are com-
parable to v (and, in a few spots, somewhat larger than v). Whereas far
from the cone the air hardly moves. So v, or a similar value, is a typical
flow velocity and also a significant change in flow velocity.

For the denominator, estimate the distance over which the flow velocity
changes significantly, for example to v/2. As mentioned, far from the cone
the air hardly moves. How far counts as ‘far from the cone’? It means far
compared to the cone’s size r, because it is the size of the flow disturbance.
So in a distance r, the flow velocity changes significantly.

Therefore the inertial term (v·∇)v is roughly

(v·∇)v ∼
v2

r
.

What is the approximate magnitude of the viscosity term ν∇2v?

The viscosity term ν∇2v contains two spatial derivatives, one flow velocity,
and one viscosity. The typical change in flow velocity is v – as in the inertial
term. Each spatial derivative again contributes a factor of 1/r to the typical
magnitude. So viscosity term ν∇2v is roughly
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ν∇2v ∼
νv

r2
.

Here is ratio of the inertial term to the viscous term:

(v·∇)v
ν∇2v

∼
v2/r

νv/r2
=

rv

ν
.

Not only is the ratio dimensionless (why must it be?), but it is the Reynolds
number! So the Reynolds number measures how much viscosity affects
the flow. When Re � 1, the viscous term is the far larger term, and vis-
cosity is the important physical effect. The flow oozes, as when pouring
cold ketchup. When Re � 1, the viscous term is the far smaller term, and
viscosity is a negligible effect. It then cannot prevent nearby pieces of flu-
id from acquiring significantly different velocities, so the flow easily turns
turbulent.

We now need two pieces of luck. First, the falling cones should be an
extreme case of Re. Second, in that extreme case, the mystery function f

should be easy to guess.

Are the falling cones an extreme of Re?

To decide, evaluate the Re by estimating the individual factors r, v, and
ν. For the speed v, everyday experience suggests – even without doing
the experiment – that the cones fall at roughly 1 m s−1 (within a factor
of 2 perhaps). Their size r is roughly 0.1 m (again within a factor of 2).
And the kinematic viscosity of the fluid (air) in which the cones fall is
ν ∼ 10−5 m2 s−1. [This value can be found online, in numerous hand-
books such as [10, 11], or by applying approximation methods to physics
and engineering calculations (the subject of another textbook).]

Combine these estimates to get the Reynolds number for a falling cone:

Re ∼

r︷ ︸︸ ︷
0.1 m×

v︷ ︸︸ ︷
1 m s−1

10−5 m2 s−1︸ ︷︷ ︸
ν

∼ 104.

This dimensionless number is significantly greater than 1, so the falling
cones are an example of the high-Reynolds number extreme. (For the low-
Reynolds number extreme, try Problem 2.28.)
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Problem 2.22 Reynolds numbers in everyday flows
Estimate Re for:

a. a submarine cruising underwater;

b. a falling pollen grain;

c. a falling raindrop;

d. a 747 crossing the Atlantic.

Before continuing, let’s catch our breath by reviewing the analysis so far.
The original problem was to find the terminal velocity of a falling cone.
That problem splits into two parts: (1) finding the drag as a function of
speed, and (2) finding the speed at which the drag balances weight. The
second problem is significantly easier than the first problem, which in-
volves the Navier–Stokes equations of fluid mechanics.

To avoid solving those equations, use dimensions. Dimensions require that
F satisfy

F

ρv2r2
= f (Re) ,

where Re ≡ rv/ν. But dimensions cannot make further progress.

Fortunately, the falling cones are an extreme case of the Reynolds number.
Therefore the next step is to guess, without solving equations, how drag
should behave when Re � 1, then choose an f(Re) that reproduces the
behavior.

The high-Reynolds-number limit can be reached many ways. One way is
to shrink the viscosity ν to 0, because ν lives in the denominator of the
Reynolds number. So, in the high-Reynolds-number limit, viscosity disap-
pears from the problem and therefore the drag should be independent of
viscosity.2

The constraint that F be independent of ν provides enough information to
guess f. To see how, look at all occurrences of ν in

F

ρv2r2
= f(

rv

ν
).

This reasoning contains several subtle untruths, yet its conclusion is mostly correct. Clar-2

ifying the subtleties required two hundred years of mathematical and physical progress,
culminating in an understanding of singular perturbations and the theory of boundary lay-
ers [12, 13].
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The viscosity ν appears only on the right side via the Reynolds number.
Therefore, to make F independent of ν, the right side – which is f – must
be independent of Reynolds number. But f is a function only of Reynolds
number, so to make it independent of Reynolds number it must be a con-
stant! Since the left side is dimensionless, the constant must also be dimen-
sionless:

F

ρv2r2
= dimensionless constant.

The drag force is therefore F ∼ ρv2r2, where ρ is the density of air, v is
the cone’s speed, and r is its size. Since r2 is proportional to the cone’s
cross-sectional area A, a common way to write the drag is

F ∼ ρv2A.

Although the derivation began with falling cones, the result above applies
to any object moving in a fluid (as long as the Reynolds number is high).
The object’s shape affects only the hidden dimensionless constant. To give
an idea of the typical sizes of the constant: For a sphere, it is approximately
1/4; and for a flat plate falling face down, it is roughly 1.

2.4.3 Terminal velocities

Fdrag

W = mg

The general result gives enough information to compare
the terminal velocities of the small and large cones. At its
terminal velocity, a cone has no net force on it, so drag
balances weight. Weight is proportional to the area of the
paper used to make the cone. Therefore

ρv2A︸ ︷︷ ︸
drag

∝ A︸︷︷︸
weight

.

The area divides out, so

v2 ∝ ρ−1.

Since the small and large cones fall in the same fluid (air), the ρ is the same
for both cones, showing that the cones fall at the same speed. In other
words, the cone’s terminal velocity is independent of its size!

To test this prediction, I made two cones as described on page 45, held
the small and large cones above my head one in each hand, and let go.
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Their fall lasted roughly two seconds, and they landed within 0.1 s of one
another. Experiment and cheap theory agree!

Problem 2.23 Try the home experiment
Try the home experiment yourself.

Problem 2.24 Keeping more factors
The analysis in the text showed that the cone’s terminal speed is independent
of its size. With a little care, the analysis can predict the speed itself – not just
its dependence on r. So, estimate the weight of one of the cones, predict its
free-fall speed, and compare with a home experiment.

2.5 Summary and problems
The method of easy cases is based on the truism that correct solutions work
in all cases – including the easy ones. Therefore, check any proposed solu-
tion in the easy cases. And guess solutions by constructing formulas that
pass all easy-case tests.

Easy cases are especially powerful when combined with dimensions – the
tool of Chapter 1. A consequence of dimensions is that any true statement
about the world can be written in dimensionless form. This idea, combined
with easy cases, produces the following method for guessing an unknown
quantity F:

1. Find the quantities on which F depends.

2. Make dimensionless groups from among F and the quantities on which
it depends.

3. Write the putative result in dimensionless form:

dimensionless group containing F = f(other dimensionless groups).

4. Use easy cases to figure out as much as possible about the dimensionless
function f.

The problems are a chance to apply and extend these ideas.

Problem 2.25 Fencepost errors
A garden has 10 feet of horizontal fencing that you would like to divide into
1-foot segments. How many vertical posts do you need?

Problem 2.26 Odd sum
Here is the sum of the first n odd integers:
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S = 1 + 3 + 5 + · · ·+?︸ ︷︷ ︸
n terms

Is the last term 2n + 1 or 2n − 1?

Problem 2.27 Free fall with initial velocity
The ball in Section 1.2 was released from rest. What if it had an initial velocity
v0 (where positive v0 means an upward throw)? Guess the impact velocity vi.

Solve the differential equation to find the exact vi, and compare it with your
guess.

Problem 2.28 Low Reynolds number
In the limit Re� 1, guess the form of f in

F

ρv2r2
= f

(rv

ν

)
.

The result, with the correct dimensionless constant, is known as Stokes drag.

Problem 2.29 Spring equation
In the solution to the ideal-spring differential equation (Section 1.5.2), is it
reasonable that spring constant k is in the denominator? Decide using easy
cases of k.


