1 (a) $\lambda_{1}=1$ (because A is a Markov matrix) and $\lambda_{2}=.3$ (from the trace).

$$
S^{-1} A S=\left[\begin{array}{rr}
4 & 1 \\
3 & -1
\end{array}\right]^{-1}\left[\begin{array}{ll}
.7 & .4 \\
.3 & .6
\end{array}\right]\left[\begin{array}{rr}
4 & 1 \\
3 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & .3
\end{array}\right]
$$

(b) $A^{k}=S \wedge^{k} S^{-1}=\left[\begin{array}{rr}4 & 1 \\ 3 & -1\end{array}\right]\left[\begin{array}{ll}1 & \\ & (.3)^{k}\end{array}\right] \frac{1}{7}\left[\begin{array}{rr}1 & .1 \\ .3 & -4\end{array}\right]=\frac{1}{7}\left[\begin{array}{ll}4+3(.3)^{k} & 4-4(.3)^{k} \\ 3-3(.3)^{k} & 3+4(.3)^{k}\end{array}\right]$
(c) The limit is $\frac{1}{7}\left[\begin{array}{l}8 \\ 6\end{array}\right]=\frac{2}{7}\left[\begin{array}{l}4 \\ 3\end{array}\right]$, a multiple of the eigenvector x_{1}.

2 (a) $(2 A-I)^{-1}$ has eigenvalues $\frac{1}{7}, \frac{1}{7},-1$ so the determinant is $-\frac{1}{49}$.
(b) True (A is given as symmetric)
(c) True (no negative eigenvalues; A is positive semidefinite)
(d) Not enough information: $\frac{1}{4} A=\left[\begin{array}{lll}1 & & \\ & 1 & \\ & & 0\end{array}\right]$ is not Markov, $\frac{1}{4} A=\left[\begin{array}{lll}1 & & \\ & .5 & .5 \\ & .5 & .5\end{array}\right]$ is Markov.
(e) $A=Q \wedge Q^{T}=\left[\begin{array}{lll}q_{1} & q_{2} & q_{3}\end{array}\right]\left[\begin{array}{lll}4 & & \\ & 4 & \\ & & \\ & & \end{array}\right]\left[\begin{array}{l}q_{1}^{T} \\ q_{2}^{T} \\ q_{3}^{T}\end{array}\right]=4 q_{1} q_{1}^{T}+4 q_{2} q_{2}^{T}$.

3 (a) $x^{T} A^{T} A x=(A x)^{T}(A x)$ is positive unless $A x=0$. (Then it is zero - so if x is in the nullspace of A we do have $x^{T} A^{T} A x=0$.)
(b) $A\left(A^{T} A\right) A^{-1}=\left(A A^{T}\right)$ so the matrices in parentheses are similar.
(c) $A^{T} A=\left(V \Sigma^{T} U^{T}\right)\left(U \Sigma V^{T}\right)=V \Sigma^{T} \Sigma V^{T}$.

4 (a) A has eigenvalues 1 and -1 (then $a+1$ and $a-1$).
R has eigenvalues i and $-i$ (then $b+i$ and $b-i$).
(b) We need $a+1<0$ for stability so the condition is a $a<-1$.
(c) We need the real parts of $b+i$ and $b-i$ to be negative, so the condition is $b<0$.
(d) We need $a+1$ and $a-1$ to be positive, so the condition is $a>1$.

