$\begin{array}{l} \text{(a)} \ \lambda_{1} = 1 \text{ (because } A \text{ is a Markov matrix) and } \lambda_{2} = .3 \text{ (from the trace).} \\ S^{-1}AS = \begin{bmatrix} 4 & 1 \\ 3 & -1 \end{bmatrix}^{-1} \begin{bmatrix} .7 & .4 \\ .3 & .6 \end{bmatrix} \begin{bmatrix} 4 & 1 \\ 3 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & .3 \end{bmatrix} \\ \text{(b)} \ A^{k} = S \wedge^{k} S^{-1} = \begin{bmatrix} 4 & 1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ (.3)^{k} \end{bmatrix} \frac{1}{7} \begin{bmatrix} 1 & .1 \\ .3 & -4 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 4 + 3(.3)^{k} & 4 - 4(.3)^{k} \\ 3 - 3(.3)^{k} & 3 + 4(.3)^{k} \end{bmatrix} \\ \text{(b)} \ A^{k} = S \wedge^{k} S^{-1} = \begin{bmatrix} 4 & 1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ (.3)^{k} \end{bmatrix} \frac{1}{7} \begin{bmatrix} 1 & .1 \\ .3 & -4 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 4 + 3(.3)^{k} & 4 - 4(.3)^{k} \\ 3 - 3(.3)^{k} & 3 + 4(.3)^{k} \end{bmatrix}$

- (c) The limit is $\frac{1}{7}\begin{bmatrix} 8\\6 \end{bmatrix} = \frac{2}{7}\begin{bmatrix} 4\\3 \end{bmatrix}$, a multiple of the eigenvector x_1 .
- 2 (a) $(2A I)^{-1}$ has eigenvalues $\frac{1}{7}, \frac{1}{7}, -1$ so the determinant is $-\frac{1}{49}$.
 - (b) **True** (A is given as symmetric)
 - (c) **True** (no negative eigenvalues; A is positive semidefinite)
 - (d) Not enough information: $\frac{1}{4}A = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ is not Markov, $\frac{1}{4}A = \begin{bmatrix} 1 \\ .5 \\ .5 \end{bmatrix}$ is Markov.

(e)
$$A = Q \wedge Q^T = \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix} \begin{bmatrix} 4 & & \\ & 4 & \\ & & 0 \end{bmatrix} \begin{bmatrix} q_1^T \\ q_2^T \\ q_3^T \end{bmatrix} = 4q_1q_1^T + 4q_2q_2^T.$$

- 3 (a) $x^T A^T A x = (Ax)^T (Ax)$ is positive unless Ax = 0. (Then it is zero so if x is in the nullspace of A we do have $x^T A^T A x = 0$.)
 - (b) $A(A^T A)A^{-1} = (AA^T)$ so the matrices in parentheses are similar.
 - (c) $A^T A = (V \Sigma^T U^T) (U \Sigma V^T) = V \Sigma^T \Sigma V^T.$
- 4 (a) A has eigenvalues 1 and -1 (then a + 1 and a 1). R has eigenvalues i and -i (then b + i and b - i).
 - (b) We need a + 1 < 0 for stability so the condition is a a < -1.
 - (c) We need the real parts of b + i and b i to be negative, so the condition is b < 0.
 - (d) We need a + 1 and a 1 to be positive, so the condition is a > 1.