18.06
Professor Strang
Quiz 3
May 5, 1999

Your name is:
$\begin{array}{cc}\text { Grading } & 1 \\ & 2 \\ 3 \\ & 4\end{array}$

1) Mon 2-3 2-131 S. Kleiman
2) Tues 12-1 2-131 S. Kleiman
3) Mon 3-4 2-131 S. Hollander
4) Tues 1-2 2-131 S. Kleiman
5) Tues 11-12 2-132 S. Howson
6) Tues 2-3 2-132 S. Howson
7) Tues 12-1 2-132 S. Howson

1 (27 pts.) Suppose $A=\left[\begin{array}{cc}.7 & .4 \\ .3 & .6\end{array}\right]$.
(a) Find the matrices \wedge and S in the diagonalization formula $S^{-1} A S=\wedge$.
(b) Find the matrix A^{k} (all four entries of the k^{t} power of A).
(c) Find the limit as $k \rightarrow \infty$ of $u_{k}=A^{k} u_{0}$ if $u_{0}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

2 (25 pts.) Suppose a 3 by 3 real symmetric matrix A has eigenvalues 4, 4, 0 .
(a) Find the determinant from the eigenvalues of $(2 A-I)^{-1}$.
(b) True or false or not enough information:

This matrix A has 3 independent eigenvectors and can be diagonalized.
(c) True or false or not enough information:

The function $x^{T} A x$ is never negative for any vector x.
(d) True or false or not enough information:

The matrix $\frac{1}{4} A$ is a Markov matrix.
(e) If A has orthonormal eigenvectors q_{1}, q_{2}, q_{3} with $\lambda=4,4,0$, find a formula for A in terms of q_{1}, q_{2}, q_{3} using diagonalization.

3 (24 pts.) Suppose that A is an invertible 3 by 3 matrix.
(a) Show me how to prove that $x^{T} A^{T} A x$ is always positive if x is not the zero vector. Why will this fail if A is not invertible?
(b) Show me how to prove that $A^{T} A$ is similar to $A A^{T}$. Does it follow that these matrices have the same eigenvalues and eigenvectors?
(c) If the SVD is written in the usual form $A=U \Sigma V^{T}$, what is the matrix $A^{T} A$ (reduced to the simplest form)?

4 (24 pts.) (a) Find the eigenvalues of $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $R=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$. Then find the eigenvalues of $A=\left[\begin{array}{ll}a & 1 \\ 1 & a\end{array}\right]$ and $R=\left[\begin{array}{rr}b & -1 \\ 1 & b\end{array}\right]$. The numbers a and b are real.
(b) Under what condition on " a " do all solutions of $d u / d t=A u$ approach zero as $t \rightarrow \infty$?
(c) Under what conditions on " b " do all solutions of $d v / d t=R v$ approach zero as $t \rightarrow \infty$?
(d) Under what condition on " a " is the matrix A positive definite?

