Your name	Grading 1		
Please circle your recitation:			
1) Mon	2–3 2-131 S. Kleiman	5) Tues 12–1 2-131 S. Kleiman	
2) Mon	3–4 2-131 S. Hollander	6) Tues 1–2 2-131 S. Kleiman	
3) Tues 1	11–12 2-132 S. Howson	7) Tues 2–3 2-132 S. Howson	
4) Tues (1)	12–1 2-132 S. Howson		

1 (27 pts.) Suppose
$$A = \begin{bmatrix} .7 & .4 \\ .3 & .6 \end{bmatrix}$$
.

(a) Find the matrices \wedge and S in the diagonalization formula $S^{-1}AS = \wedge$.

(b) Find the matrix A^k (all four entries of the k^{th} power of A).

(c) Find the limit as
$$k \to \infty$$
 of $u_k = A^k u_0$ if $u_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

- 2 (25 pts.) Suppose a 3 by 3 real symmetric matrix A has eigenvalues 4, 4, 0.
 - (a) Find the determinant from the eigenvalues of $(2A I)^{-1}$.
 - (b) True or false or not enough information:This matrix A has 3 independent eigenvectors and can be diagonalized.
 - (c) True or false or not enough information: The function $x^T A x$ is never negative for any vector x.
 - (d) True or false or not enough information: The matrix $\frac{1}{4}A$ is a Markov matrix.
 - (e) If A has orthonormal eigenvectors q_1, q_2, q_3 with $\lambda = 4, 4, 0$, find a formula for A in terms of q_1, q_2, q_3 using diagonalization.

- **3** (24 pts.) Suppose that A is an invertible 3 by 3 matrix.
 - (a) Show me how to prove that $x^T A^T A x$ is always positive if x is not the zero vector. Why will this fail if A is not invertible?
 - (b) Show me how to prove that $A^T A$ is similar to AA^T . Does it follow that these matrices have the same eigenvalues and eigenvectors?
 - (c) If the SVD is written in the usual form $A = U\Sigma V^T$, what is the matrix $A^T A$ (reduced to the simplest form)?

4 (24 pts.) (a) Find the eigenvalues of $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $R = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Then find the eigenvalues of $A = \begin{bmatrix} a & 1 \\ 1 & a \end{bmatrix}$ and $R = \begin{bmatrix} b & -1 \\ 1 & b \end{bmatrix}$. The numbers a and b are real.

- (b) Under what condition on "a" do all solutions of du/dt = Au approach zero as $t \to \infty$?
- (c) Under what conditions on "b" do all solutions of dv/dt = Rv approach zero as $t \to \infty$?
- (d) Under what condition on "a" is the matrix A positive definite?