18.06 Professor Strang Quiz 2 Solutions April 12, 1999

1 (a) $|A|=2$ times the 3 by 3 determinant $=2$ times $0=0$.
(b) A has rank 3 so we want three orthogonal basis vectors A, B, C :

$$
\begin{aligned}
A & =\text { first column }(1,1,1,0) \\
B & =\text { (second column })-(\text { projection onto first column }) \\
& =(-1,1,3,0)-(1,1,1,0) \cdot \frac{3}{3} \\
& =(-2,0,2,0) \text { check: orthogonal to first column } \\
C & =\text { last column }(0,0,0,2)
\end{aligned}
$$

To orthogonalize divide by lengths:

$$
\begin{aligned}
q_{1} & =\frac{A}{\| A\}}=\frac{A}{\sqrt{3}} \\
& =(1,1,1,0) / \sqrt{3} \\
q_{2} & =\frac{B}{2 \sqrt{2}} \\
& =(-1,0,1,0) / \sqrt{2} \\
q_{3} & =\frac{C}{2} \\
& =(0,0,0,1)
\end{aligned}
$$

(c) Adding 1 to the a_{11} entry will add its cofactor to the determinant:

$$
\text { Cofactor } C_{11}=\left|\begin{array}{ccc}
1 & 5 & 0 \\
3 & 9 & 0 \\
0 & 0 & 2
\end{array}\right|=-12 \text {. }
$$

2 (a)

$$
\left[\begin{array}{rr}
1 & -4 \\
1 & -3 \\
1 & -2 \\
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3 \\
1 & 4
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=\left[\begin{array}{r}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
10
\end{array}\right]
$$

(b)

$$
A^{T} A=\left[\begin{array}{rr}
9 & 0 \\
0 & 60
\end{array}\right] \quad A^{T} b=\left[\begin{array}{l}
10 \\
40
\end{array}\right]
$$

Solve $A^{T} A\left[\begin{array}{l}C \\ D\end{array}\right]=A^{b}$ to find $C=\frac{10}{9}, D=\frac{40}{60}$.
(c) The columns of A are a basis for the subspace. The projection is

$$
p=C(\text { column } 1)+D(\text { column } 2) .
$$

3 (a) Q has rank n (the n orthonormal) columns are independent).
(b) $P=Q\left(Q^{T} Q\right)^{-1} Q^{T}=Q Q^{T}$.
(c) Check $P^{T}=P:\left(Q Q^{T}\right)^{T}=Q Q^{T}$.

Check $P^{2}=P:\left(Q^{T} Q\right) Q^{T}=Q Q^{T}$.
4 (a) The length of λ_{x} is $|\lambda|\|x\|$.
The length squared of Q_{x} is $(Q x)^{T}(Q x)=x^{T} Q^{T} Q x=x^{T} x=x^{T} x$.
Thus $|\lambda|\|x\|=\|x\|$ and $|\lambda|=1$.
Note: We did not use the correct notation when λ and x are complex. The reasoning stays the same.
(b) Projection onto the last column:

$$
p=a \frac{a^{T} b}{a^{T} a}=\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
1
\end{array}\right] 0=\text { zero vector. }
$$

Projection onto column space (which is all of R^{4}) is b itself.
(c) $\left|H_{2}-\lambda I\right|=\left|\begin{array}{cc}1-\lambda & 1 \\ 1 & -1-\lambda\end{array}\right|=\lambda^{2}-2=0$.

The eigenvalues are $\sqrt{2}$ and $-\sqrt{2}$. Check trace $=0$ and determinant $=-2$.

