18.06
Professor Strang
Quiz 2
April 12, 1999

Your name is:
Grading $\begin{aligned} & 1 \\ & \\ & \\ & \\ & \\ & 3 \\ & \\ & \\ & 4\end{aligned}$
$\begin{array}{llccllllll}\text { 1) } & \text { Mon } & 2-3 & 2-131 & \text { S. Kleiman } & \text { 5) } & \text { Tues } & 12-1 & 2-131 & \text { S. Kleiman } \\ \text { 2) } & \text { Mon } & 3-4 & 2-131 & \text { S. Hollander } & \text { 6) } & \text { Tues } & 1-2 & 2-131 & \text { S. Kleiman } \\ \text { 3) } & \text { Tues } & 11-12 & 2-132 & \text { S. Howson } & \text { 7) } & \text { Tues } & 2-3 & 2-132 & \text { S. Howson } \\ \text { 4) } & \text { Tues } & 12-1 & 2-132 & \text { S. Howson } & & & & & \end{array}$

1 (30 pts.) (a) Compute the determinant of

$$
A=\left[\begin{array}{rrrr}
1 & -1 & 1 & 0 \\
1 & 1 & 5 & 0 \\
1 & 3 & 9 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]
$$

(b) Find an orthogonal basis (orthonormal is even better) for the column space of A. Start from a basis and use Gram-Schmidt (and common sense).
(c) If you change the 1 in the upper left corner of A to 2 , what is the change in the determinant (I would use cofactors).

2 (24 pts.) An experiment at the nine times $t=-4,-3,-2,-1,0,1,2,3,4$ yields the consistent result $b=0$ except at the last time $(t=4)$ we get $b=10$. We want the best straight line $b=C+D t$ to fit these nine data points by least squares.
(a) Write down the equations $A x=b$ with unknowns C and D that would be solved if a straight line exactly fit the data (it doesn't).
(b) Find the best least squares value of C and D.
(c) This problem is really projecting the vector $b=(0,0,0,0,0,0,0,0,10)$ onto a certain subspace. Give a basis for that subspace and give the projection p of b onto the subspace.

3 (22 pts.) Suppose an m by n matrix Q has orthonormal columns.
(a) What is the rank of Q ?
(b) Give an expression with no inverses for the projection matrix P onto the column space of Q.
(c) Check that your formula for P satisfies the two requirements for a projection matrix.

4 (24 pts.) (a) Suppose Q is an orthogonal matrix and $Q x=\lambda x$. Compare the lengths of λx and $Q x$ (using $(Q x)^{T}(Q x)$) to reach a conclusion about λ.
(b) The Hadamard matrix H has orthogonal columns:

$$
H=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

Project the vector $b=(1,2,3,4)$ onto the line spanned by the last column. Then project b onto the subspace spanned by all four columns.
(c) Find the eigenvalues of $H_{2}=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$.

