Your name is:							Grading	$\frac{1}{2}$
Please circle your recitation:								$\frac{2}{3}$
1) Mon	2-3 2-131	S. Kleiman	5)	Tues	12-1	2-131	S. Kleiman	
2) Mon	3-4 2-131	S. Hollander	6)	Tues	1 - 2	2-131	S. Kleiman	
3) Tues	11-12 2-132	S. Howson	7)	Tues	2 - 3	2-132	S. Howson	
4) Tues	12–1 2-132	S. Howson						

1 (30 pts.) (a) Compute the determinant of

$$A = \begin{bmatrix} 1 & -1 & 1 & 0 \\ 1 & 1 & 5 & 0 \\ 1 & 3 & 9 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}.$$

- (b) Find an orthogonal basis (orthonormal is even better) for the column space of A. Start from a basis and use Gram-Schmidt (and common sense).
- (c) If you change the 1 in the upper left corner of A to 2, what is the change in the determinant (I would use cofactors).

- 2 (24 pts.) An experiment at the nine times t = -4, -3, -2, -1, 0, 1, 2, 3, 4 yields the consistent result b = 0 except at the last time (t = 4) we get b = 10. We want the best straight line b = C + Dt to fit these nine data points by least squares.
 - (a) Write down the equations Ax = b with unknowns C and D that would be solved if a straight line exactly fit the data (it doesn't).
 - (b) Find the best least squares value of C and D.
 - (c) This problem is really projecting the vector b = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)onto a certain subspace. Give a basis for that subspace and give the projection p of b onto the subspace.

- **3** (22 pts.) Suppose an m by n matrix Q has orthonormal columns.
 - (a) What is the rank of Q?
 - (b) Give an expression with no inverses for the projection matrix P onto the column space of Q.
 - (c) Check that your formula for P satisfies the two requirements for a projection matrix.

4 (24 pts.) (a) Suppose Q is an orthogonal matrix and $Qx = \lambda x$. Compare the lengths of λx and Qx (using $(Qx)^T(Qx)$) to reach a conclusion about λ .

(b) The Hadamard matrix H has orthogonal columns:

Project the vector b = (1, 2, 3, 4) onto the line spanned by the *last* column. Then project b onto the subspace spanned by all four columns.

(c) Find the eigenvalues of
$$H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
.