1 (a) 1. (no $c$ )
2. (all $c \neq 0)$
3. $c=0$
(b) rank $3 c \neq 0$
$\operatorname{rank} 2 c=0$
(c) $N(A)=\{0\}$ if $c \neq 0$
$N(A)=$ all multiples of $\left[\begin{array}{r}-2 \\ 1 \\ 0\end{array}\right]$ if $c=0$.
(d) $c \neq 0$ Give any basis for $R^{3}$
$c=0$ one basis is $\left[\begin{array}{l}0 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 9\end{array}\right]$
2 (a) $m$
(b) Only the zero vector.
(c) (0 or 1) solutions.

3 The matrix $A$ is 4 by $3 . A^{T}$ is 3 by 4 .
(a) Every system $A^{T} y=0$ with more unknowns than equations has a nonzero solution. (By the way, $y$ will be a vector perpendicular to the 3 -dimensional hyperplane.)
(b) $A$ has independent columns, since $u, v, w$ form a basis.

4 (a) Solve $A x=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ for the first column of $A^{-1}$.
(b) $\left[\begin{array}{lll}a & 3 & 2 \\ 1 & 3 & 0 \\ 1 & b & 0\end{array}\right][x]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ gives $x=\left[\begin{array}{c}0 \\ 0 \\ 1 / 2\end{array}\right]$ by inspection.
(c) If $b=3$ then $\operatorname{rank}(A)=2$ (Two equal rows, regardless of $a$ )

If $b \neq 3$ then $\operatorname{rank}(A)=3$ (Three independent rows, regardless of $a$ )
(d) If $b=3$ then one basis is $\left[\begin{array}{l}3 \\ 3 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]$

If $b \neq 3$ then choose any basis for $R^{3}$.

