- **1** (a) 1. (no c) 2. (all $c \neq 0$) 3. c = 0
 - (b) rank 3 $c \neq 0$ $\operatorname{rank} 2 \ c = 0$

(c)
$$N(A) = \{0\}$$
 if $c \neq 0$
 $N(A) = \text{all multiples of} \begin{bmatrix} -2\\ 1\\ 0 \end{bmatrix}$ if $c = 0$.
(d) $c \neq 0$ Give any basis for R^3
 $c = 0$ one basis is $\begin{bmatrix} 0\\ 0\\ 3 \end{bmatrix}, \begin{bmatrix} 1\\ 2\\ 9 \end{bmatrix}$

2 (a) m

- (b) Only the zero vector.
- (c) (0 or 1) solutions.
- **3** The matrix A is 4 by 3. A^T is 3 by 4.
 - (a) Every system $A^T y = 0$ with more unknowns than equations has a nonzero solution. (By the way, y will be a vector *perpendicular* to the 3-dimensional hyperplane.)
 - (b) A has independent columns, since u, v, w form a basis.

4 (a) Solve
$$Ax = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
 for the first column of A^{-1} .
(b) $\begin{bmatrix} a & 3 & 2\\1 & 3 & 0\\1 & b & 0 \end{bmatrix} \begin{bmatrix} x\\x \end{bmatrix} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$ gives $x = \begin{bmatrix} 0\\0\\1/2 \end{bmatrix}$ by inspection.
(c) If $b = 3$ then rank $(A) = 2$ (Two equal rows, regardless of a)
If $b \neq 3$ then rank $(A) = 3$ (Three independent rows, regardless of a)
(d) If $h = 3$ then one basis is $\begin{bmatrix} 3\\3\\3 \end{bmatrix} \begin{bmatrix} 2\\0\\0 \end{bmatrix}$

(d) If
$$b = 3$$
 then one basis is $\begin{bmatrix} 3\\3\\3 \end{bmatrix}$, $\begin{bmatrix} 2\\0\\0 \end{bmatrix}$
If $b \neq 3$ then choose any basis for R^3 .