Your name is:				ng 1 2
Please circle your recitation:				$\frac{2}{3}$
1) Mon	2-3 2-1	31 S. Kleiman	5) Tues 12–1 2-131 S. Kleimar	1 —
2) Mon	3-4 2-1	31 S. Hollander	6) Tues 1–2 2-131 S. Kleimar	1
3) Tues	11-12 2-1	32 S. Howson	7) Tues 2–3 2-132 S. Howson	
4) Tues	12-1 2-1	32 S. Howson		

1 (32 pts.) The 3 by 3 matrix A is

$$A = \left[\begin{array}{ccc} c & c & 1 \\ c & c & 2 \\ 3 & 6 & 9 \end{array} \right] \, .$$

(a) Which values of c lead to each of these possibilities?

1. A = LU: three pivots without row exchanges

2. PA = LU: three pivots after row exchanges

3. A is singular: less than three pivots. (Continued)

- (b) For each c, what is the rank of A?
- (c) For each c, describe exactly the nullspace of A.
- (d) For each c, give a basis for the column space of A.

- 2 (21 pts.) A is m by n. Suppose Ax = b has at least one solution for every b.
 - (a) The rank of A is _____.
 - (b) Describe all vectors in the nullspace of A^T .
 - (c) The equation $A^T y = c$ has $(0 \text{ or } 1)(1 \text{ or } \infty)(0 \text{ or } \infty)(1)$ solution for every c.

- **3 (16 pts.)** Suppose u, v, w are a basis for a subspace of R^4 , and these are the columns of a matrix A.
 - (a) How do you know that $A^T y = 0$ has a solution $y \neq 0$?
 - (b) How do you know that Ax = 0 has only the solution x = 0?

4 (31 pts.) (a) To find the first column of A^{-1} (3 by 3), what system Ax = b would you solve?

(b) Find the first column of A^{-1} (if it exists) for

$$A = \begin{bmatrix} a & 3 & 2 \\ 1 & 3 & 0 \\ 1 & b & 0 \end{bmatrix}.$$

- (c) For each a and b, find the rank of this matrix A and say why.
- (d) For each a and b, find a basis for the column space of A.