Final Examination in Linear Algebra: 18.06
 May 18, 1999

1. (a) $\left[\begin{array}{r}-3 \\ -1 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{r}-4 \\ 0 \\ 0 \\ 1\end{array}\right]$
(b) $\left[\begin{array}{l}1 \\ 0 \\ 3 \\ 4\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right]$
(c) $5($ row 1$)+4($ row 2$)$
(d) A has rank 2 and A^{T} is 4 by 3 so its nullspace has dimension $3-2=1$.
2. (a) $C(A)=\mathbf{R}^{5}$ since every b is in the column space.
(b) The rank is 5 so the five rows must be linearly independent.
(c) The nullspace must have dimension $7-5=2$.
(d) This is false because the 7 columns cannot be linearly independent.
3. (a) This is generally false, as for $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$ and $A^{-1}=\left[\begin{array}{rr}2 & -1 \\ -1 & 1\end{array}\right]$. Note that $A=L D U$ gives $A^{-1}=U^{-1} D^{-1} L^{-1}$ (upper times lower!).
(b) True because $\operatorname{det} A^{-1}=1 /(\operatorname{det} A)$.
(c) Multiply row 1 by A^{-1} and add to row 2 to obtain $\left[\begin{array}{ll}A & I \\ 0 & A^{-1}\end{array}\right]$.
(d) The determinant is +1 . Exchange the first n columns with the last n. This produces a factor $(-1)^{n}$ and leaves $\left[\begin{array}{cc}I & A \\ 0 & -I\end{array}\right]$ which is triangular with determinant $(-1)^{n}$. Then $(-1)^{n}(-1)^{n}=+1$.
4. (a) From $A x_{3}=\lambda_{3} x_{3}$ we have $A\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.
(b) $A=S \wedge S^{-1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{lll}3 & & \\ & 1 & \\ & & 0\end{array}\right]\left[\begin{array}{rrr}1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]=\left[\begin{array}{lll}3 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 1 & 0\end{array}\right]$.
(c) Transpose $S^{-1} A S=\wedge$ to get $S^{T} A^{T}\left(S^{-1}\right)^{T}=\wedge$. Then the columns of $\left(S^{-1}\right)^{T}$ are the eigenvectors of A^{T}, and part (b) gives $\left(S^{-1}\right)^{T}=\left[\begin{array}{rrr}1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right]$.
5. (a) $1 C+0 D+E=1$
$1 C+2 D+E=3$
$0 C+1 D+E=5$$\quad$ is $A x=b$.
$0 C+1 D+E=5$
$0 C+2 D+E=0$
(b) Subtract equation (1) from equation (2):

$$
\begin{aligned}
& 2 D=2 \\
& \text { gives } D=1 \\
& D+E=5 \text { gives } E=4 \\
& 2 D+E=0 \text { is now false }
\end{aligned}
$$

(c) Solve $A^{T} A \hat{x}=A^{T} b$:

$$
\begin{aligned}
{\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 2 & 1 & 2 \\
1 & 1 & 1 & 1
\end{array}\right] } & {\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 2 & 1 \\
0 & 1 & 1 \\
0 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
\hat{C} \\
\hat{D} \\
\hat{E}
\end{array}\right]=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 2 & 1 & 2 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
3 \\
5 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{lll}
2 & 2 & 2 \\
2 & 9 & 5 \\
2 & 5 & 4
\end{array}\right]\left[\begin{array}{l}
\hat{C} \\
\hat{D} \\
\hat{E}
\end{array}\right]=\left[\begin{array}{c}
4 \\
11 \\
9
\end{array}\right] } \\
& {\left[\begin{array}{lll}
2 & 2 & 2 \\
0 & 7 & 3 \\
0 & 0 & \frac{5}{7}
\end{array}\right]\left[\begin{array}{l}
\hat{C} \\
\hat{D} \\
\hat{E}
\end{array}\right]=\left[\begin{array}{c}
4 \\
7 \\
2
\end{array}\right] }
\end{aligned}
$$

Back-substitution gives $\hat{E}=\frac{14}{5}, \hat{D}=\frac{-1}{5}, \hat{C}=\frac{-3}{5}$.
(d) The error vector e is perpendicular to the three columns of A.
6. (a) One way is to solve for x perpendicular to q_{1} and q_{2} :

$$
\left[\begin{array}{rrr}
3 & 4 & 5 \\
4 & -3 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Another way is Gram-Schmidt and we might as well start with $a_{3}=(0,0,1)$. Then Gram-Schmidt subtracts off projections:

$$
a_{3}-\left(a_{3}^{T} q_{1}\right) q_{1}-\left(a_{3}^{T} q_{2}\right)=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]-\frac{5}{50}\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]-0=\left[\begin{array}{r}
-.3 \\
-.4 \\
.5
\end{array}\right] .
$$

Normalizing to a unit vector gives

$$
q_{3}=\frac{1}{\sqrt{50}}\left[\begin{array}{r}
-3 \\
-4 \\
5
\end{array}\right]
$$

(b) a_{3} will not work if it is in the plane of q_{1} and q_{2}.

The only possible vectors q_{3} are $+\left(\right.$ our $\left.q_{3}\right)$ and $-\left(\right.$ our $\left.q_{3}\right)$.
(c) The projection is the vector that was subtracted off in part (a):

$$
p=\frac{5}{50}\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]=\left[\begin{array}{l}
0.3 \\
0.4 \\
0.5
\end{array}\right]
$$

7. (a) Cannot exist because A and A^{T} have the same rank.
(b) $A=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ or any non-square A with independent columns.
(c) The desired A has an eigenvalue like -2 , outside the unit circle and in the left half-plane. In fact, $A=[-2]$ is a 1 by 1 example.
(d) From the two given nullspace vectors we know that $A=\left[\begin{array}{lll}v & v & -v\end{array}\right]$ for some column v. The particular solution $(1,1,1)$ determines v :

$$
A\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] \quad \text { gives } \quad v+v-v=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] \quad \text { so } \quad v=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
$$

(e) (My favorite this year)

The first pivot must be $a_{11}=-1$. The the trace $1+2$ requires $a_{22}=4$. Then the determinant must be 2 , so these matrices will work:

$$
A=\left[\begin{array}{rr}
-1 & -1 \\
6 & 4
\end{array}\right] \quad \text { or any } \quad A=\left[\begin{array}{rr}
-1 & -a \\
6 / a & 4
\end{array}\right] .
$$

8. (a) $5!=120$ terms are sure to be zero.
(b) Yes, $(U V)^{T}(U V)=V^{T} U^{T} U V=V^{T} V=I$.
(c) No, symmetry would need $A B=(A B)^{T}=B^{T} A^{T}=B A$ and we don't normally have $A B=B A$.
(d) The 1 by 1,2 by 2, 3 by 3 determinants are $1, c-4$, and -4 (not depending on $c!$). The last is negative so A is not positive definite. But $\operatorname{det} A=-4$ so A has no zero eigenvalues so A^{2} has all three positive eigenvalues.
9. (a) $x_{0}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ has $A x_{0}=0$.
(b) $A^{2} x_{0}=A\left(A x_{0}\right)=0$
(c) The dimension of $N\left(A^{T}\right)$ is at least 1 (because A is square and we know that $(1,1,1)$ is in $N(A))$.
(d) A is singular so $\lambda=0$ is an eigenvalue of A so $\lambda=4$ is an eigenvalue of $A+4 I$.
