Final Examination in Linear Algebra: 18.06May 18, 1999SolutionsProfessor Strang

- 1. (a) $\begin{bmatrix} -3\\ -1\\ 1\\ 0 \end{bmatrix}$ and $\begin{bmatrix} -4\\ 0\\ 0\\ 1 \end{bmatrix}$ (b) $\begin{bmatrix} 1\\ 0\\ 3\\ 4 \end{bmatrix}$ and $\begin{bmatrix} 0\\ 1\\ 1\\ 0 \end{bmatrix}$
 - (c) 5(row 1) + 4(row 2)
 - (d) A has rank 2 and A^T is 4 by 3 so its nullspace has dimension 3-2=1.
- 2. (a) $C(A) = \mathbf{R}^5$ since every b is in the column space.
 - (b) The rank is 5 so the five rows must be linearly independent.
 - (c) The nullspace must have dimension 7-5=2.
 - (d) This is **false** because the 7 columns cannot be linearly independent.
- 3. (a) This is generally **false**, as for $A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$. Note that A = LDU gives $A^{-1} = U^{-1}D^{-1}L^{-1}$ (upper times lower!).
 - (b) **True** because det $A^{-1} = 1/(\det A)$.
 - (c) Multiply row 1 by A^{-1} and add to row 2 to obtain $\begin{bmatrix} A & I \\ 0 & A^{-1} \end{bmatrix}$.
 - (d) The determinant is +1. Exchange the first *n* columns with the last *n*. This produces a factor $(-1)^n$ and leaves $\begin{bmatrix} I & A \\ 0 & -I \end{bmatrix}$ which is triangular with determinant $(-1)^n$. Then $(-1)^n(-1)^n = +1$.

4. (a) From
$$Ax_3 = \lambda_3 x_3$$
 we have $A \begin{bmatrix} 0\\0\\1 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$.
(b) $A = S \wedge S^{-1} = \begin{bmatrix} 1 & 0 & 0\\1 & 1 & 0\\1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 3\\1\\0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\-1 & 1 & 0\\0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0\\2 & 1 & 0\\2 & 1 & 0 \end{bmatrix}$.
(c) Transpose $S^{-1}AS = \wedge$ to get $S^TA^T(S^{-1})^T = \wedge$. Then the columns of $(S^{-1})^T$ are the eigenvectors of A^T , and part (b) gives $(S^{-1})^T = \begin{bmatrix} 1 & -1 & 0\\0 & 1 & -1\\0 & 0 & 1 \end{bmatrix}$.

- 5. (a) 1C + 0D + E = 1 1C + 2D + E = 3 0C + 1D + E = 5 0C + 2D + E = 0 is Ax = b.
 - (b) Subtract equation (1) from equation (2):

$$2D = 2$$
 gives $D = 1$
 $D + E = 5$ gives $E = 4$
 $2D + E = 0$ is now false

(c) Solve $A^T A \hat{x} = A^T b$:

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 2 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} \hat{C} \\ \hat{D} \\ \hat{E} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 2 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 5 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 2 & 2 \\ 2 & 9 & 5 \\ 2 & 5 & 4 \end{bmatrix} \begin{bmatrix} \hat{C} \\ \hat{D} \\ \hat{E} \end{bmatrix} = \begin{bmatrix} 4 \\ 11 \\ 9 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 2 & 2 \\ 0 & 7 & 3 \\ 0 & 0 & \frac{5}{7} \end{bmatrix} \begin{bmatrix} \hat{C} \\ \hat{D} \\ \hat{E} \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 2 \end{bmatrix}$$

Back-substitution gives $\hat{E} = \frac{14}{5}, \hat{D} = \frac{-1}{5}, \hat{C} = \frac{-3}{5}.$

(d) The error vector e is perpendicular to the three columns of A.

6. (a) One way is to solve for x perpendicular to q_1 and q_2 :

$$\begin{bmatrix} 3 & 4 & 5 \\ 4 & -3 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Another way is Gram-Schmidt and we might as well start with $a_3 = (0, 0, 1)$. Then Gram-Schmidt subtracts off projections:

$$a_3 - (a_3^T q_1)q_1 - (a_3^T q_2) = \begin{bmatrix} 0\\0\\1 \end{bmatrix} - \frac{5}{50} \begin{bmatrix} 3\\4\\5 \end{bmatrix} - 0 = \begin{bmatrix} -.3\\-.4\\.5 \end{bmatrix}$$

Normalizing to a unit vector gives

$$q_3 = \frac{1}{\sqrt{50}} \begin{bmatrix} -3\\ -4\\ 5 \end{bmatrix}$$

- (b) a_3 will not work if it is in the plane of q_1 and q_2 . The only possible vectors q_3 are $+(\operatorname{our} q_3)$ and $-(\operatorname{our} q_3)$.
- (c) The projection is the vector that was subtracted off in part (a):

$$p = \frac{5}{50} \begin{bmatrix} 3\\4\\5 \end{bmatrix} = \begin{bmatrix} 0.3\\0.4\\0.5 \end{bmatrix}.$$

- 7. (a) Cannot exist because A and A^T have the same rank.
 - (b) $A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ or any non-square A with independent columns.
 - (c) The desired A has an eigenvalue like -2, outside the unit circle and in the left half-plane. In fact, A = [-2] is a 1 by 1 example.
 - (d) From the two given nullspace vectors we know that $A = \begin{bmatrix} v & v & -v \end{bmatrix}$ for some column v. The particular solution (1, 1, 1) determines v:

$$A\begin{bmatrix}1\\1\\1\end{bmatrix} = \begin{bmatrix}1\\1\\2\end{bmatrix} \quad \text{gives} \quad v+v-v = \begin{bmatrix}1\\1\\2\end{bmatrix} \quad \text{so} \quad v = \begin{bmatrix}1\\1\\2\end{bmatrix}.$$

(e) (My favorite this year)

The first pivot must be $a_{11} = -1$. The the trace 1 + 2 requires $a_{22} = 4$. Then the determinant must be 2, so these matrices will work:

$$A = \begin{bmatrix} -1 & -1 \\ 6 & 4 \end{bmatrix} \quad \text{or any} \quad A = \begin{bmatrix} -1 & -a \\ 6/a & 4 \end{bmatrix}.$$

- 8. (a) 5! = 120 terms are sure to be zero.
 - (b) **Yes**, $(UV)^T (UV) = V^T U^T UV = V^T V = I$.
 - (c) No, symmetry would need $AB = (AB)^T = B^T A^T = BA$ and we don't normally have AB = BA.
 - (d) The 1 by 1, 2 by 2, 3 by 3 determinants are 1, c 4, and -4 (not depending on c!). The last is negative so A is not positive definite. But det A = -4 so A has no zero eigenvalues so A^2 has all three positive eigenvalues.

9. (a)
$$x_0 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 has $Ax_0 = 0$.

- (b) $A^2 x_0 = A(Ax_0) = 0$
- (c) The dimension of $N(A^T)$ is at least 1 (because A is square and we know that (1, 1, 1) is in N(A)).
- (d) A is singular so $\lambda = 0$ is an eigenvalue of A so $\lambda = 4$ is an eigenvalue of A + 4I.