1. (a)

$$\lambda_{1} = 1 \qquad \lambda_{2} = 0$$

$$x_{1} = a = \begin{bmatrix} 3\\4 \end{bmatrix} \qquad x_{2} = \begin{bmatrix} 4\\-3 \end{bmatrix}$$
(or multiples of x_{1} and x_{2})

(b)

$$\lambda_1 = .6 + .8i \qquad \lambda_2 = .6 - .8i$$
$$x_1 = \begin{bmatrix} 1\\-i \end{bmatrix} \qquad x_2 = \begin{bmatrix} 1\\i \end{bmatrix}$$

(c)

λ_1	=	2(1) - 1 = 1
λ_2	=	2(0) - 1 = -1
R ha	as tl	ne same eigenvectors as P

2. (a)

 $\lambda_1 = 1 \quad \text{(for any Markov matrix)} \\ \lambda_2 = 0 \quad \text{(since } A \text{ is singular)} \\ \lambda_3 = .6 \quad \text{(since the trace of } A \text{ is } 1.6) \\ (1, 2, 3 \text{ can be permuted})$

(b)

$$n \ge 1$$
: $A^n u_0 = 1^n x_1 + 0^n x_2 + (.6)^n x_3$
= $x_1 + (.6)^n x_3$

(c)

 $A^n u_0$ approaches x_1 .

3. (a) Suppose M is any invertible matrix. Circle all the properties of a matrix A that remain the same for $M^{-1}AM$:

symmetric positive definiteness

(b) This is a similar question but now Q is an orthonormal matrix. Circle the properties of A that remain the same for $Q^{-1}AQ$:

$$= Q^T A Q !$$

same column space

 A^k approaches zero as k increases orthonormal eigenvectors symmetric positive definiteness projection matrix

4. (a) Suppose the 5 by 4 matrix A has independent columns. What is the most information you can give about

> the eigenvalues of $A^T A$: <u>They are real and positive</u> the eigenvectors of $A^T A$: <u>They are orthogonal</u> the determinant of $A^T A$: <u>The determinant is positive</u>

(b)

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 4 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$U \qquad \Sigma \qquad V^{T}$$

(c)

$$T(v_1 + v_2) = T(v_1) + T(v_2)$$

= $Iw_1 + Iw_2 = w_1 + w_2$
(intermediate steps may be ommitted)