Final Examination in Linear Algebra: 18.06
 May 18, 1998
 9:00-12:00
 Professor Strang

Your name is:
Grading 1
Please circle your recitation:

1) M2 2-132 M. Nevins 2-588 3-4110 monica@math 5
2) M3 2-131 A. Voronov 2-246 $\quad 3-3299$ voronov@math $\quad 6$
3) T10 2-132 A. Edelman 2-380 3-7770 edelman@math
4) T12 2-132 A. Edelman 2-380 3-7770 edelman@math
5) T12 2-131 Z. Spasojevic 2-101 3-4470 zoran@math
6) T1 2-131 Z. Spasojevic 2-101 $\quad 3-4770$ zoran@math
7) T2 2-132 Y. Ma 2-333 3-7826 yanyuan@math

Answer all 8 questions on these pages. This is a closed book exam. Calculators are not needed in any way and therefore not allowed (to be fair to all). Grades are known only to your recitation instructor. Best wishes for the summer and thank you for taking 18.06.

1 If A is a 5 by 4 matrix with linearly independent columns, find each of these explicitly:
(a) (3 points) The nullspace of A.
(b) (3 points) The dimension of the left nullspace $\boldsymbol{N}\left(A^{T}\right)$.
(c) (3 points) One particular solution x_{p} to $A x_{p}=$ column 2 of A.
(d) (3 points) The general (complete) solution to $A x=$ column 2 of A.
(e) (3 points) The reduced row echelon form R of A.

2 (a) (5 points) Find the general (complete) solution to this equation $A x=b$:

$$
\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 1 & 2 \\
2 & 2 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
2 \\
2 \\
4
\end{array}\right] .
$$

(b) (3 points) Find a basis for the column space of the 3 by 9 block matrix $\left[\begin{array}{ll}A & 2 A\end{array} A^{2}\right]$.

3 (a) (5 points) The command $N=$ null (A) produces a matrix whose columns are a basis for the nullspace of A. What matrix (describe its properties) is then produced by $B=\operatorname{null}\left(N^{\prime}\right)$?
(b) (3 points) What are the shapes (how many rows and columns) of those matrices N and B, if A is m by n of $\operatorname{rank} r$?

4 Find the determinants of these three matrices:
(a) (2 points)

$$
A=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 2 & 0 \\
0 & 3 & 0 & 0 \\
1 & 2 & 3 & 4
\end{array}\right]
$$

(b) (2 points)

$$
B=\left[\begin{array}{rr}
0 & -A \\
I & -I
\end{array}\right] \quad(8 \text { by } 8, \text { same } A)
$$

(c) (2 points)

$$
C=\left[\begin{array}{cc}
A & -A \\
I & -I
\end{array}\right] \quad(8 \text { by } 8, \text { same } A)
$$

5 If possible construct 3 by 3 matrices A, B, C, D with these properties:
(a) (3 points) A is a symmetric matrix. Its row space is spanned by the vector $(1,1,2)$ and its column space is spanned by the vector $(2,2,4)$.
(b) (3 points) All three of these equations have no solution but $B \neq 0$:

$$
B x=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad B x=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad B x=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

(c) (3 points) C is a real square matrix but its eigenvalues are not all real and not all pure imaginary.
(d) (3 points) The vector $(1,1,1)$ is in the row space of D but the vector $(1,-1,0)$ is not in the nullspace.

6 Suppose u_{1}, u_{2}, u_{3} is an orthonormal basis for \mathbf{R}^{3} and v_{1}, v_{2} is an orthonormal basis for \mathbf{R}^{2}.
(a) (5 points) What is the rank, what are all vectors in the column space, and what is a basis for the nullspace for the matrix $B=u_{1}\left(v_{1}+v_{2}\right)^{T}$?
(b) (5 points) Suppose $A=u_{1} v_{1}^{T}+u_{2} v_{2}^{T}$. Multiply $A A^{T}$ and simplify. Show that this is a projection matrix by checking the required properties.
(c) (4 points) Multiply $A^{T} A$ and simplify. This is the identity matrix! Prove this (for example compute $A^{T} A v_{1}$ and then finish the reasoning).

7 (a) (4 points) If these three points happen to lie on a line $y=C+D t$, what system $A x=b$ of three equations in two unknowns would be solvable?

$$
y=0 \text { at } t=-1, \quad y=1 \text { at } t=0, \quad y=B \text { at } t=1 .
$$

Which value of B puts the vector $b=(0,1, B)$ into the column space of A ?
(b) (4 points) For every B find the numbers \bar{C} and \bar{D} that give the best straight line $y=\bar{C}+\bar{D} t$ (closest to the three points in the least squares sense).
(c) (4 points) Find the projection of $b=(1,0,0)$ onto the column space of A.
(d) (2 points) If you apply the Gram-Schmidt procedure to this matrix A, what is the resulting matrix Q that has orthonormal columns?

8 (a) (5 points) Find a complete set of eigenvalues and eigenvectors for the matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

(b) (6 points, 1 each) Circle all the properties of this matrix A :
A is a projection matrix
A is a positive definite matrix
A is a Markov matrix
A has determinant larger than trace
A has three orthonormal eigenvectors
A can be factored into $A=L U$
(c) (4 points) Write the vector $u_{0}=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$ as a combination of eigenvectors of A, and compute the vector $u_{100}=A^{100} u_{0}$.

