Final Examination in Linear Algebra: 18.06

May 18, 1998 9:00–12:00 Professor Strang

Your name is:							Grading	1
								2
Please circle your recitation:								$\frac{3}{4}$
1)	M2	2-132	M. Nevins	2-588	3-4110	monica@math		5
(1) (2)	M3			2-246	3-3299	voronov@math		$\frac{6}{7}$
3)	T10			2-380	3-7770	edelman@math		8
4)	T12	2-132	A. Edelman	2 - 380	3-7770	edelman@math	-	0
5)	T12	2 - 131	Z. Spasojevic	2 - 101	3-4470	zoran@math		
6)	T1	2-131	Z. Spasojevic	2-101	3 - 4770	zoran@math		
7)	T2	2-132	Y. Ma	2-333	3-7826	yanyuan@math		

Answer all 8 questions on these pages. This is a closed book exam. Calculators are not needed in any way and therefore not allowed (to be fair to all). *Grades are known only to your recitation instructor*. Best wishes for the summer and thank you for taking 18.06.

 GS

1 If A is a 5 by 4 matrix with linearly independent columns, find each of these **explicitly**:

- (a) **(3 points)** The nullspace of A.
- (b) (3 points) The dimension of the left nullspace $N(A^T)$.
- (c) (3 points) One particular solution x_p to $Ax_p = \text{column } 2 \text{ of } A$.
- (d) (3 points) The general (complete) solution to Ax = column 2 of A.
- (e) (3 points) The reduced row echelon form R of A.

2 (a) (5 points) Find the general (complete) solution to this equation Ax = b:

$$\begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}.$$

(b) (3 points) Find a basis for the column space of the 3 by 9 block matrix $[A \ 2A \ A^2]$.

- 3 (a) (5 points) The command N = null (A) produces a matrix whose columns are a basis for the nullspace of A. What matrix (describe its properties) is then produced by B = null (N')?
 - (b) (3 points) What are the shapes (how many rows and columns) of those matrices N and B, if A is m by n of rank r?

4 Find the determinants of these three matrices:

(a) (2 points)

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 3 & 0 & 0 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

(b) (2 points)

$$B = \begin{bmatrix} 0 & -A \\ I & -I \end{bmatrix}$$
 (8 by 8, same A)

(c) (2 points)

$$C = \begin{bmatrix} A & -A \\ I & -I \end{bmatrix}$$
 (8 by 8, same A)

- 5 If possible construct 3 by 3 matrices A, B, C, D with these properties:
 - (a) (3 points) A is a symmetric matrix. Its row space is spanned by the vector (1, 1, 2) and its column space is spanned by the vector (2, 2, 4).
 - (b) (3 points) All three of these equations have no solution but $B \neq 0$:

$$Bx = \begin{bmatrix} 1\\0\\0 \end{bmatrix} \qquad Bx = \begin{bmatrix} 0\\1\\0 \end{bmatrix} \qquad Bx = \begin{bmatrix} 0\\0\\1 \end{bmatrix}.$$

- (c) (3 points) C is a real square matrix but its eigenvalues are not all real and not all pure imaginary.
- (d) (3 points) The vector (1, 1, 1) is in the row space of D but the vector (1, −1, 0) is not in the nullspace.

6 Suppose u_1, u_2, u_3 is an orthonormal basis for \mathbf{R}^3 and v_1, v_2 is an orthonormal basis for \mathbf{R}^2 .

- (a) (5 points) What is the rank, what are all vectors in the column space, and what is a basis for the nullspace for the matrix $B = u_1(v_1 + v_2)^T$?
- (b) (5 points) Suppose $A = u_1 v_1^T + u_2 v_2^T$. Multiply AA^T and simplify. Show that this is a projection matrix by checking the required properties.
- (c) (4 points) Multiply $A^T A$ and simplify. This is the identity matrix! Prove this (for example compute $A^T A v_1$ and then finish the reasoning).

7 (a) (4 points) If these three points happen to lie on a line y = C + Dt, what system Ax = b of three equations in two unknowns would be solvable?

$$y = 0$$
 at $t = -1$, $y = 1$ at $t = 0$, $y = B$ at $t = 1$.

Which value of B puts the vector b = (0, 1, B) into the column space of A?

- (b) (4 points) For every B find the numbers \overline{C} and \overline{D} that give the best straight line $y = \overline{C} + \overline{D}t$ (closest to the three points in the least squares sense).
- (c) (4 points) Find the projection of b = (1, 0, 0) onto the column space of A.
- (d) (2 points) If you apply the Gram-Schmidt procedure to this matrix A, what is the resulting matrix Q that has orthonormal columns?

8 (a) (5 points) Find a complete set of eigenvalues and eigenvectors for the matrix

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}.$$

(b) (6 points, 1 each) Circle all the properties of this matrix A:

A is a projection matrix

A is a positive definite matrix

A is a Markov matrix

A has determinant larger than trace

A has three orthonormal eigenvectors

A can be factored into A = LU

(c) (4 points) Write the vector $u_0 = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$ as a combination of eigenvectors of A, and compute the vector $u_{100} = A^{100}u_0$.