
MIT 18.06 Final Exam Solutions, Spring 2022
Johnson

Problem 1 (4+4+6 points):
The matrix A is given by

A = LUL−1U−1

for

L =


1
−1 1
0 3 1
1 0 0 1

 , U =


2 0 1 1
−1 0 −1

−2 1
1

 .

(a) Write an expression for A−1 in terms of L, U , L−1, and/or U−1 (but you
don’t need to actually multiply or invert the terms!).

(b) What is the determinant of A?

(c) Solve PAx = b for x, where P is the 4 × 4 permutation that swaps the

1st and 4th elements of a vector, and b =


−5
4
11
−3

 . (You can get partial

credit by just outlining a reasonable sequence of steps here that doesn’t
involve a lot of unnecessary calculation.)

Solution:
(a) The inverse of a product is the product of the inverses in reverse order, so

A−1 = ULU−1L−1 .

(b) Using the various determinant identities:

detA = det(LUL−1U−1) = det(L) det(U) det(L−1) det(U−1)

= det(L) det(U) det(L)−1 det(U)−1

= 1 .
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(c) We have
x = A−1P−1b = U LU−1 L−1P−1b︸ ︷︷ ︸

u︸ ︷︷ ︸
v︸ ︷︷ ︸
w

,

but each of these steps (labeled u, v, w for convenience below) is easy. To
be reasonably efficient (and preserve your sanity), it is crucial to not ex-
plicitly compute any matrix inverses and to not explicitly compute the
matrix A (or PA) at all. Instead, we break ULU−1L−1P−1b into a se-
quence of steps, evaluating from right-to-left, exploiting the fact that
multiplying by U−1 or L−1 is just a triangular solve and can be done
quickly. (No Gaussian elimination.)

Another way of saying this is that for n × n matrices, doing inversion,
or Gaussian elimination, or even just multiplying two matrices costs ∼ n3

arithmetic operations, whereas a sequence of triangular solves and ma-
trix–vector multiplications costs ∼ n2 arithmetic. Here, n is only 4, but
even so the ∼ n2 approach is significantly less work (especially because it
turns out to involve no fractions):

(i) P is just a swap, so it is its own inverse: P−1 = P and P−1b =
−3
4
11
−5

.

(ii) u = L−1(P−1b) is equivalent to solving Lu = P−1b , which we can
do by forward-substitution since L is lower-triangular:

1
−1 1
0 3 1
1 0 0 1




u1

u2

u3

u4

 =


−3
4
11
−5

 =⇒

u1 = −3
−u1 + u2 = 4 =⇒ u2 = 1
3u2 + u3 = 11 =⇒ u3 = 8
u1 + u4 = −5 =⇒ u4 = −2

=⇒ u =


−3
1
8
−2

 .

(iii) v = U−1u is equivalent to solving Uv = u, which we can do by
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back-substitution since U is upper-triangular:
2 0 1 1
−1 0 −1

−2 1
1




v1

v2

v3

v4

 =


−3
1
8
−2

 =⇒

2v1 + v3 + v4 = −3 =⇒ v1 = 2
−v2 − v4 = 1 =⇒ v2 = 1
−2v3 + v4 = 8 =⇒ v3 = −5

v4 = −2

=⇒ v =


2
1
−5
−2

 .

(iv) Finally, we just need to multiply v by L and then U :

w = Lv =


1
−1 1
0 3 1
1 0 0 1




2
1
−5
−2

 =


2
−1
−2
0

 ,

and hence we finally obtain

x = Uw =


2 0 1 1
−1 0 −1

−2 1
1




2
−1
−2
0

 =


2
1
4
0

 .

If you happened to try to solve the last part by first computing U−1 and L−1

and multiplying PA = PLUL−1U−1 explicitly, in the unlikely event you did it
correctly you would have gotten:

L−1 =


1 0 0 0
1 1 0 0
−3 −3 1 0
−1 0 0 1

 , U−1 =


0.5 0 0.25 −0.75
0 −1 0 −1
0 0 −0.5 0.5
0 0 0 1

 ,

PA = PLUL−1U−1 =


−1.5 3 −1.25 7.75

1 −2 1 −6
2.5 −3 2.25 −9.75
−1 3 −1 6

 ,

(PA)−1 = ULU−1L−1P =


−3.75 −3.75 0.25 1.5

0 1 0 1
5.25 2.25 1.25 −2.5
0.25 −0.75 0.25 −0.5


and then you could multiply (PA)−1 by b to get the same x. It would be a rare
human being who could carry out all those steps without making an arithmetic
error, however! (I used Julia to get the matrices above.)
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Problem 2 (4+6 points):
(a) If a and x are vectors in Rn, then aaTx can be computed using either

left-to-right as (aaT )x or right-to-left as a(aTx), where the parentheses
indicate the order of operations. Roughly count the number of arithmetic
operations (additions and multiplications) in these two approaches: say
whether each approach scales proportional to n, n2, n3, etcetera.

(b) A is an n × n real matrix and x is an n-component real vector. Indicate
which of the following must be equal to one another:

trace(AxxT ), trace(xAxT ), trace(xTAx), xTAx,

trace(xTxA), xxTA, trace(xxTA), determinant(xxTA).

For the expressions that are equal, indicate how you would evaluate this
quantity in a cost (in arithmetic operations) proportional to n2.

Solution:
(a) The arithmetic counts are as follows:

(i) left-to-right (aaT )x requires ∼ n2 operations. Forming the aaT ma-
trix (n×n) requires n2 multiplications (of every element of a by every
other element of a), while multiplying aaT by the vector x requires
another n2 multiplications (and n2 − n additions), for a cost that is
proportional to n2 for large n. Computer scientists would say that
the cost is Θ(n2).

(ii) right-to-left a(aTx) requires ∼ n operations. The dot product aTx
requires n multiplications and n−1 additions, while multipling (aTx)
by a is another n multiplications. Computer scientists would say that
the cost is Θ(n)

(b) The key rule to remember here is the cyclic property of the trace:
trace(AB) = trace(BA) for any matrices A and B (whose sizes allow
them to be multiplied). Hence

trace(AxxT ) = trace(xxTA) = trace(xTAx) = xTAx ,

where for the last equality we have employed the usual 18.06 ambiguity
between interpreting xTAx as a 1×1 matrix or as a scalar. (Note that the
expression xAxT doesn’t even makes sense because the shapes are wrong.)

To evaluate this in operations proportional to n2 , the simplest is per-
haps to use xTAx = xT (Ax), which requires one matrix-vector product
Ax (∼ n2 cost) and one dot product (∼ n cost, negligible for large n). Al-
ternatively, you could (for example) compute AxxT as (Ax)xT , since both
y = Ax and yxT cost ∼ n2 operations, and then find the trace (∼ n). One
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thing you should definitely not do is to compute xxT (∼ n2), multiply it
by A (∼ n3 for a matrix–matrix multiplication!) and then take the trace
(∼ n).
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Problem 3 (4+4+4+5 points):
You have a 4× 3 matrix A =

(
q1 2q2 3q1 + 4q2

)
, where we have expressed

the three columns of A in terms of the orthonormal vectors

q1 =
1

2


1
1
−1
−1

 , q2 =
1

2


1
−1
−1
1

 .

(a) What is the rank of A?

(b) Give a basis for N(A).

(c) You are asked to calculate the projection matrix P onto C(A). Your
friend Harvey Ard suggests applying the formula P = A(ATA)−1AT he
memorized in linear algebra. Explain why this won’t work here, and give
an even simpler (correct) formula for P in terms of the quantities above.
(You need not evaluate P numerically, just write a formula in terms of
products of quantities defined above.)

(d) Find the closest vector to x =


2
0
0
0

 in N(AT ).

Solution:
(a) A is rank 2 since its columns are spanned by q1 and q2.

(b) The nullspace N(A) is 3− 2 = 1 dimensional, so we just need one vector.
We don’t need to do any elimination, however, because we are already
given that the third column of A is a linear combination of the first two:

(column 3) = 3(column 1)+2(column 2) =⇒ 3(column 1)+2(column 2)−(column 3) = 0,

and hence a basis for N(A) is  3
2
−1

 .

Of course, you could also do Gaussian elimination on A and find the special
solution, but this is a lot of wasted effort when we already told you how
column 3 depends on the other two columns!

(c) This won’t work because A is not full column rank, so the square
matrix ATA is not invertible. (Note, however, that this formula does
not require A to be “invertible” or “non-singular,” or even be square! Nor
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does it require A to have orthogonal/orthonormal columns. . . just linearly
independent.) Even more precisely, rank(ATA) = rank(A) = 2, but ATA
is a 3 × 3 matrix. Equivalently, N(ATA) = N(A) 6= {~0}, which again
implies that ATA is singular.

Instead, since we already have an orthonormal basis Q =
(
q1 q2

)
for

C(A), we can use the simpler projection formula for an orthonormal basis:

P = QQT = q1q
T
1 + q2q

T
2 .

Note that this QQT formula only works when Q has orthonormal columns,
i.e. when QTQ = I. So, for example, B =

(
q1 2q2

)
(the first two

columns of A) would not give a projection matrix BBT .

(d) The closest vector is the orthogonal projection. Since N(AT ) = C(A)⊥,
the orthogonal projection is obtained by simply subtracting the projec-
tion onto C(A):

(I − P )x = x−QQTx = x− q1 (qT1 x)︸ ︷︷ ︸
=1

−q2 (qT2 x)︸ ︷︷ ︸
=1

=


2
0
0
0

− 1

2


1
1
−1
−1

− 1

2


1
−1
−1
1

 =


1
0
1
0

 .

(Alternatively, you could first compute the matrix I−P and then multiply
it by x, but this is a lot more work, similar to what you analyzed in problem
2a! An even more wasteful approach is to form AT and do Gaussian
elimination to find its special solutions. In this case, however, you can
probably see by inspection that N(AT ), which must be 2-dimensional, is
spanned by (1, 1, 1, 1) and by (1,−1, 1,−1), or alternatively by (1, 0, 1, 0)
and (0, 1, 0, 1), so you could do orthogonal projection with these vectors
pretty easily; many students forgot to normalize them correctly, though.)
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Problem 4 (3+4+4+6 points):

The nullspace N(A) of the real matrix A is spanned by the vector v =


1
2
3
4

 .

(a) Give as much true information as possible about the size (the number of
rows and columns) of A.

(b) Give an eigenvector and eigenvalue of the matrix B = (3I − ATA)(3I +
ATA)−1.

(c) Aside from the eigenvalue identified in the previous part, all other eigen-
values λ of B must be (circle/copy all that apply): purely real, purely
imaginary, zero, negative real part, positive real part, |λ| < 1, |λ| > 1,
|λ| ≤ 1, |λ| ≥ 1.

(d) Give a good approximate formula for of Bn


0
−1
0
8

 for large n. (Give

an explicit numerical vector, possibly including simple functions of n like
2n or n3. . . no other abstract symbolic formulas.)

Solution:
(a) The matrix A must have 4 columns to multiply by v, and it must

therefore have rank 3 to have a 1d nullspace. Hence there must be at
least 3 rows.

(b) N(ATA) = N(A), so ATA has an eigenvalue of 0 and an eigenvector of v.
Hence B has an eigenvalue of (3− 0)/(3 + 0) = 1 and an corresponding
eigenvector v .

(c) Since the 4×4 matrix ATA is positive semidefinite (for any real A), and we
identified its only zero eigenvalue (it has a 1d nullspace), all of its other
three eigenvalues λa must be real and > 0. For any eigenvalue λa > 0
of ATA, the corresponding eigenvalue of B is λ = 3−λa

3+λa
. these must be

purely real with magnitude |λ| < 1. Of course, this also means |λ| ≤ 1.

(They could be zero if there is a λa = 3, or they could have positive
real parts if λa < 3, but neither of these is necessarily true.)

(d) B is diagonalizable, so we imagine expanding (0,−1, 0, 8) in the basis of
eigenvectors. Then Bn multiplies each eigenvector by λn, and for large
n this is dominated by the λ = 1 term (since all of the other eigenvalues
have magnitude < 1, they give terms that are exponentially decaying
with n). Furthermore, B is Hermitian with orthogonal eigenvectors (the
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same eigenvectors as those of ATA), so we can find the λ = 1 component
of (0,−1, 0, 8) simply by orthogonal projection onto the corresponding
eigenvector v:

Bn


0
−1
0
8

 ≈ 1n
vvT

vT v


0
−1
0
8

 =
1

12 + 22 + 32 + 42︸ ︷︷ ︸
=30


1
2
3
4

( 1 2 3 4
)

0
−1
0
8


︸ ︷︷ ︸

=30

=


1
2
3
4

 .
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Problem 5 (10 points):
Describe (give an explicit numerical result with as few unknowns as possible)
all possible linear combinations of the vectors

a1 =

 1
0
2

 , a2 =

 1
2
4

 , a3 =

 1
−1
3

 , a4 =

 1
1
1



that give the vector x =

 4
−1
5

 .

Solution:
We are trying to find all coefficients (c1, c2, c3, c4) of the linear combinations
c1a1 + c2a2 + c3a3 + c4a4 such that

c1a1 + c2a2 + c3a3 + c4a4 =

 1 1 1 1
0 2 −1 1
2 4 3 1


︸ ︷︷ ︸

A


c1
c2
c3
c4


︸ ︷︷ ︸

c

=

 4
−1
5


︸ ︷︷ ︸

x

.

But this is exactly the complete solution to Ac = x. So, we need to follow
the usual steps from exam 1, and it’s good to remind ourselves of the process
before we start chugging through arithmetic.

(a) Do Gaussian elimination onA. Determine the rank and pivot/free columns.

(b) Solve for a basis of the nullspace N(A), e.g. the special solutions. (We
expect at least a 1d nullspace since the rank of A must be ≤ 3). This will
tell us the non-uniqueness of the solution.

(c) Solve for a particular solution cp by setting the free variables to zero.

(d) The complete solution is then cp plus any vector in N(A), which will have
one unknown (one free parameter) per special solution.

Now, let’s carry this out. Gaussian elimination gives:

 1 1 1 1
0 2 −1 1
2 4 3 1


︸ ︷︷ ︸

A

−−−−−→
r3−2r1

 1 1 1 1

0 2 −1 1
0 2 1 −1

 −−−−−→
r3−r2

 1 1 1 1

0 2 −1 1

0 0 2 −2


︸ ︷︷ ︸

U

.

where we have put boxes around the pivots. A has rank 3 (it is full row rank),
so we will always have solutions to Ac = x, and we expect a 1d nullspace. To
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find a vector in the nullspace, we just set the free variable (c4) to = 1 and then
solve for the pivot variables by back-substitution:

U


c1
c2
c3
1

 = 0 =⇒

 1 1 1
2 −1

2

 c1
c2
c3

 =

 −1
−1
2


︸ ︷︷ ︸
−(free column)

=⇒
c1 + c2 + c3 = −1 =⇒ c1 = −2

2c2 − c3 = −1 =⇒ c2 = 0
c3 = 1

=⇒ special solution cn =


−2
0
1
1

 .

Next, we find the particular solution by setting c4 = 0 and solving for the pivot
variables, again by back-substitution. However, remember that the right-hand-
side has changed: we need to apply the original elimination steps to x: 4

−1
5


︸ ︷︷ ︸

x

−−−−−→
r3−2r1

 4
−1
−3

 −−−−−→
r3−r2

 4
−1
−2

 .

(We could have also done this by “augmenting” A with x originally, the usual
trick for hand calculation.) We finally solve

U


c1
c2
c3
0

 =

 1 1 1
2 −1

2

 c1
c2
c3

 =

 4
−1
−2



=⇒
c1 + c2 + c3 = 4 =⇒ c1 = 6
2c2 − c3 = −1 =⇒ c2 = −1

c3 = −1
=⇒ cp =


6
−1
−1
0

 .

Hence, the complete solution is given by c = cp + αcn for any scalar α or, more
explicitly, by the linear combinations

6a1 − a2 − a3 + α(−2a1 + a3 + a4)

for any scalar α.
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Problem 6 (8+8 points):
Professor May Trix is trying to construct an 18.06 homework question in which
dx
dt = Ax has the solution

x(t) = v1 cos(2t) + v2e
−t + v3 sin(2t)

for some nonzero real constant vectors v1, v2, v3, and some initial condition
x(0). Help May construct A, v1, v2, v3, and x(0):

(a) Write down a numerical formula for a possible real matrix A such that A
is as small in size as possible and where A contains no zero entries.
Your formula can be left as a product of some matrices and/or matrix
inverses — you don’t need to multiply them out or invert any matrices,
but you should give possible numeric values for all of the matrices in your
formula. (You don’t need to explicitly check that your A has no zero en-
tries as long as zero entries seem unlikely. e.g. the inverse of a matrix
with no special structure probably has no zero entries.)

(Note that there are many possible answers here, but they will all have
certain things in common.)

(b) Using the numbers that you chose from the formula in your previous part,
give possible corresponding (numeric) values for x(0), v1, v2, and v3.

Solution:
(a) One approach here that we can construct a possible A from its di-

agonalization, given what we know of the eigenvalues and by choosing
appropriate eigenvectors. (We’re doing exactly the same steps that we
carry out in going from eigenvectors to the solution x(t), just in reverse
order!)

From x(t), we know that A must have at least 3 eigenvalues λ =
−1,+2i,−2i, each of which give eλt terms in x(t) = eAtx(0). (Note that
cos(2t) = e2it+e−2it

2 and sin(2t) = e2it−e−2it

2i , which corresponds to the
±2i eigenvalues—which must come in a complex-conjugate pair since A is
real.) Therefore, the smallest possible matrix is 3 × 3. For the matrix A
to be real, we must also have complex-conjugate eigenvectors for the
±2i eigenvalues. Putting it all together, we can just pick some eigenvec-
tors x1, x2, x3 arbitrarily (anything we want as long as they are linearly
independent and have a complex-conjugate pair x2 = x3!) and then
define A by its diagonalization:

A = XΛX−1 =

 1 1 + i 1− i
1 i −i
1 −i i


︸ ︷︷ ︸
X=

(
x1 x2 x3

)

 −1
2i
−2i


︸ ︷︷ ︸

Λ

X−1 .
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You were not required to multiply this out, but if you did so you would

find A = 1
2

−4 5 −3
−4 3 −1
4 −5 −1

 in this particular example. As could have

been expected, this has no nonzero entries—generically we don’t expect
to see zeros appearing in a product like this unless X has a very special
structure (e.g. triangular or diagonal).

Of course, there are infinitely many possible answers here, but they
should all have the same basic pattern, just with different choices of eigen-
vectors. Any X matrix with linearly independent columns, two complex-
conjugate columns and one real column (in the right spots), and no special
pattern of zero entries (not triangular or diagonal) was acceptable. Note
also that the eigenvectors cannot be purely real or purely imaginary, be-
cause otherwise their complex conjugates would not be linearly indepen-
dent.

There is also a completely different approach which does not depend
on eigenvalues and diagonalization at all! Instead, we could just write out
dx
dt for this x(t) and try to find a matrix A such that dx

dt = Ax. One way
to carry this out is to first write out x(t) in matrix form:

x(t) =
(
v1 v2 v3

)︸ ︷︷ ︸
V

 cos(2t)
e−t

sin(2t)

 ,

which gives

dx

dt
= V

 −2 sin(2t)
−e−t

2 cos(2t)


= V

 −2
−1

2


︸ ︷︷ ︸

=AV ?

 cos(2t)
e−t

sin(2t)

 .

By comparing to Ax(t), we immediately obtain

A = V

 −2
−1

2

V −1.

which is the desired matrix for any invertible choice of V—just pick some
random real numbers for the entries V (and as long as they have no special
pattern you are almost certain to get all nonzero entries of A). Note
that this also immediately gives the answer for part (b), since the
columns of V are the desired vectors, and x(0) = v1 + v2. Note also that
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this means that A is similar to the “anti-diagonal matrix” in the middle,
whose eigenvalues you can straightforwardly compute to be −1 and ±2i as
above: its characteristic polynomial is λ2(λ+1)+4(λ+1) = (λ2+4)(λ+1).

(b) For such a matrix A, we generically expect x(t) = eAtx(0) to look like

x(t) = c1e
−tx1 + c2e

2itx2 + c3e
−2itx3

for some coefficients c1, c2, c3 determined by expanding x(0) in the basis
of the eigenvectors, i.e. c = X−1x(0). If x(0) is real, then the coefficients
c2 and c3 must be complex conjugates, leading to solutions of the form

x(t) = c1e
−tx1 + 2Re

[
c2e

2itx2

]
.

We can pick c1 and c2 to be whatever we want (as long as they are nonzero,
since we have to get both terms), so let’s pick c1 = 1 and c2 = 1/2 (to
cancel the 2). (You can pick something else of course.) This gives

x(t) =

 1
1
1


︸ ︷︷ ︸
v2=x1

e−t + Re

e2it

 1 + i
i
−i

 .

Using Re
[
e2it
]

= cos(2t) and Re
[
ie2it

]
= − sin(2t), we finally obtain

x(t) =

 1
1
1


︸ ︷︷ ︸

v2

e−t +

 1
0
0


︸ ︷︷ ︸

v1

cos(2t) +

 −1
−1
1


︸ ︷︷ ︸

v3

sin(2t) ,

where we have identified v1, v2, v3. And of course x(0) = v2 + v1 will hold

for any choices of numbers; in this particular case we get x(0) = (2, 1, 1) .
More generally, if we choose c2 = 1/2 as above, then

2Re
[
c2e

2itx2

]
= Re

[
e2itx2

]
= Re [x2]︸ ︷︷ ︸

v1

cos(2t)− Im [x2]︸ ︷︷ ︸
−v3

sin(2t)

with x(0) = v2 + Re [x2].
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Problem 7 (8+8 points):
Suppose that we have a sequence ofm data points (xi, yi) coming from a physics
experiment that we want to fit to a line cx + d, where the coefficients c and d
are chosen to minimize the sum of the squares of the errors. But, because some
of the data points have more measurement error than others, we don’t weight
the errors equally in minimizing the error. In particular, suppose that we want
to minimize:

E = weighted error = w1(cx1+d−y1)2+w2(cx2+d−y2)2+· · · =
m∑
i=1

wi(cxi+d−yi)2.

where w1, w2, . . . , wm > 0 are some positive weights associated with each data
point (more uncertain data points have smaller weight).

(a) To convert this into a standard least-squares problem, show that we
can rewrite E in the form E = ‖Mu−v‖2 for some matrixM , an unknown
vector u, and a known vector v — give explicit expressions for M , u, and
v in terms of the points (xi, yi), the weights wi, and the unknowns c and
d.

(b) More generally, suppose that we are minimizing E = (Ax− b)TW (Ax− b)
over x ∈ Rn where A is an m × n real matrix, b is an m-component
real vector, and W is an m×m real-symmetric positive-definite “weight”
matrix. Using the properties of positive-definite matrices from class,
show that we can rewrite E as a standard least-squares problem E =
‖Mx− v‖2 for some matrix M and vector v: that is, explain how M and
v could be related to A, W , and b.

Solution:
(a) To make it look like a standard least-squares problem, we can just rewrite

each term in the sum as

wi(cxi+d−yi)2 = (cxi
√
wi+d

√
wi−yi

√
wi)

2 = ([linear in c, d]− [constant])2
,

which is the form of an ordinary least-squares problem. In particular, it
leads to E = ‖Mu− v‖2 where:

u =

(
c
d

)
, M =


x1
√
w1

√
w1

x2
√
w2

√
w2

...
...

xm
√
wm

√
wm

 , v =


y1
√
w1

y2
√
w2

...
ym
√
wm

 .

(b) If W is positive-definite, then we said in class that it must be possible to

factorizeW in the form W = BTB for some (full column rank) B. hence

E = (Ax−b)TBTB(Ax−b) = ‖B(Ax−b)‖2 = ‖(BA)x−(Bb)‖2 = ‖Mx−v‖2
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where M = BA, v = Bb .

For example, in class we mentioned the possible choice B =
√
W . (Com-

putationally, an easier choice would be a Cholesky factorization, but that’s
beyond the scope of 18.06.)
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