
pset7

September 7, 2017

1 18.06 pset 7

Due Wednesday, April 5.

1.1 Problem 1

Refer to the orthogonal polynomials notebook from class for this problem.

In class, we defined an dot product f · g =
∫ 1

−1 f(x)g(x)dx for functions on x ∈ [−1, 1], and using this

we showed how we could apply Gram–Schmidt to the polynomials {1, x, x2, . . .} to find an orthogonal of
polynomials pk(x), the Legendre polynomials.

1.1.1 part (a)

In class, I claimed that by performing the orthogonal projection of any function f(x) onto these polynomials,
we obtain the least-square fit polynomial on the interval [−1, 1]. In this problem, you will apply basic
calculus to show that explicitly.

Suppose we have an orthonormal basis q0(x), q1(x), q2(x), q3(x) for all degree ≤ 3 polynomials (the vector
space P3). i.e. qi · qj = 0 if i 6= j and = 1 if i = j, using our dot product from above. Given a real-valued
function f(x) on [−1, 1] (with finite f · f — none of these integrals should blow up!), we want to find the
closest degree-3 polynomial to f in the least-square sense:

min
p∈P3

∫ 1

−1
[f(x)− p(x)]2dx = min

p∈P3

(f − p) · (f − p) = min
p∈P3

‖f − p‖2

Write p(x) in our orthonormal basis:

p(x) = c0q0(x) + c1q1(x) + c2q2(x) + c3q3(x)

At the minimum p (the least-square fit), basic calculus tells us that the partial derivative must be zero:

∂

∂ck
‖f − p‖2 = 0

Show that this leads to the condition ck = qk · f , which is exactly the coefficient of the orthogonal
projection.

Hint: You can easily verify that the product rule ∂
∂c (f · g) =

(
∂f
∂c · g

)
+
(
f · ∂g∂c

)
works for dot products

of functions!

1.1.2 part (b)

Suppose that we have real-valued function f(x) that is in the span of an infinite orthonormal basis qk(x) of
functions (e.g. polynomials as above) on [−1, 1] with the dot product from above, i.e.

f(x) =

∞∑
k=0

ckqk(x)

1

http://nbviewer.jupyter.org/github/stevengj/1806-spring17/blob/master/lectures/Orthogonal-Polynomials.ipynb

for coefficients ck = qk · f . Assuming ‖f‖ is finite (i.e. the function f is square-integrable), derive the
identity:

‖f‖2 = f · f =

∞∑
k=0

c2k

(This result is called Parseval’s theorem for Fourier series.)
How does this relate to problem 4 of pset 6?
(For people who have taken 18.100 or similar: assume you can freely interchange/re-order the infinite

sums, limits, integrals, etcetera; doing this properly would involve establishing some technical conditions on
the infinite series here.)

1.2 Problem 2

Apply Gram-Schmidt to the polynomials 1, x, x2 to find an orthonormal basis of polynomials under the
different dot product:

f · g =

∫ ∞
0

f(x)g(x)e−xdx

There are lots of ways to define dot products in practice, and in real applications the choice of dot
product depends a lot on the problem you are solving. For example, one might want to the weight the errors
differently at different points (here, weighting by e−x) in a least-square fit.

1.3 Problem 3

(Based on Strang, section 6.2, problem 33.) Consider the following four 2×2 matrices, which have very
similar-looking entries:

In []: A = [3. 2.

1. 4.]

B = [3. 2.

-5. -3.]

C = [5. 7.

-3. -4.]

D = [5. 6.9

-3. -4.]

display(A); display(B); display(C); display(D)

1.3.1 (a)

Compute each matrix to the 100th power in Julia, e.g. compute A100 in Julia by A^100. The results should
be very different!

In []:

In []:

In []:

In []:

2

https://en.wikipedia.org/wiki/Square-integrable_function
https://en.wikipedia.org/wiki/Parseval's_theorem

1.3.2 (b)

All of these matrices are diagonalizable (can be written asXΛX−1 as in lecture), with two distinct eigenvalues
λ. The function eigvals(A) computes the eigenvalues of A in Julia. Using the built-in eigvals function,
compute the eigenvalues of these four matrices, and use them to explain the results you observed in part
(a).

Note that the eigenvalues may be complex numbers, even for real matrices, just as the roots of a real
polynomial may be complex! The complex number z = a + bi in Julia is written z = a + b*im. Complex
numbers can also be written in polar form z = reiθ, where r = abs(z) and θ = angle(z) in Julia. Recall
that zn = rneinθ blows up if |z| = r = abs(z) is > 1.

In []:

In []:

In []:

In []:

1.4 Problem 4

1.4.1 (a)

Based on Strang, section 5.1, problem 8. Prove that every orthogonal matrix (QTQ = I) has determinant
+1 or −1, in two ways:

• Use the product rule det(AB) = (detA)(detB) and the transpose rule detQ = detQT .
• Use only the product rule. If |detQ| < 1 then detQn = (detQ)n goes to zero: Qn becomes nearly

singular for large n. How do you know that this can’t happen to Qn?
• Hint: (Qn)T (Qn) =??? so Qn is ???.
• Alternatively, think about problem 4 of pset 6, and note that a nearly singular matrix A has a vector
x 6= 0 that is nearly in a nullspace (Ax is nearly zero).

1.4.2 (b)

If detA = 1, does that mean that A is orthogonal? Explain why or provide a counterexample if it is false.

1.4.3 (c)

If detA = 1234, what is detR where R is the upper-triangular matrix in the QR factorization of A?

1.5 Problem 5

1.5.1 (a)

The function X = randn(5,5) in Julia generates a random 5×5 matrix. Given X, we can compute a new
matrix Y = αX for some scalar α such that detY = 1234. What is α?

In []: X = randn(5,5)

to make things easier, I’ll force det(X) to be positive by flipping the sign of the first column if needed

if det(X) < 0

X[:,1] = -X[:,1]

end

det(X)

In []: α = ??? # fill in this line!

Y = α * X

det(Y) # this should give 1234 (+ small roundoff error)

3

http://tutorial.math.lamar.edu/Extras/ComplexPrimer/Forms.aspx
http://www.suitcaseofdreams.net/powers_complex.htm

1.5.2 (b)

Using your matrix Y , compute its QR factorization by Q, R = qr(Y) and use this to check your answer
from problem 4(c) above.

In []: Q, R = qr(Y)

In []:

4

