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Due Friday, May 12 at 11am.

1.1 Problem 1

A key fact leading to the SVD is that for any m× n real matrix A, the positive semidefinite (eigenvalues ≥
0) matrices ATA and AAT have the same nonzero eigenvalues σ2

k > 0, where the σk are called the singular
values of A, for k = 1, 2, . . . , r, for r = rank(A). So, the SVD simultaneously diagonalizes ATA and AAT .

In this problem, you will derive the “reduced” form of the SVD based only on what you know about
eigenvectors.

(a) Suppose λ = σ2 > 0 is one of the r nonzero eigenvalues (if any) of AAT (they cannot be negative
because AAT is positive semidefinite for any A). That is, AATu = σ2u for some eigenvector u, normalized
to uTu = 1. Find an eigenvector v of ATA with the same eigenvalue, normalized to vT v = 1. (Hint: show
that ATA(ATu) = · · ·. Check your vT v to make sure that it is 1!)

(b) Why aren’t the eigenvectors for λ=0 eigenvalues related in the same way, i.e. why isn’t there a 1-to-1
correspondence between the λ=0 eigenvectors of AAT and ATA, just as in the previous part? (Hint: long
ago, in class, we showed N(AT ) = N(AAT ) for any A. . . this was a key point in least-squares problems.)

(c) How do your eigenvectors u and v from (a) relate to the solution of problem 2 from pset 9?
(d) Since N(A) = N(ATA) (we derived this long ago in class, for least-squares and projection problems),

explain why Ax = AV̂ V̂ Tx for any x, where V̂ is the n × r matrix whose columns are the orthonormal
eigenvectors v1, . . . , vr of ATA with positive eigenvalues σ2

1 , . . . , σ
2
r > 0. (Recall that V̂ V̂ T is the projection

operation onto C(V̂ ). Hint: C(V̂ ) is the orthogonal complement of the nullspaces of what matrices?)
(e) Take the r = rank(A) nonzero eigenvectors σ2

k of AAT (or ATA) and the corresponding orthonormal

eigenvectors uk and vk from part (a). Form the m×r matrix Û whose columns are u1, . . . , ur, along with the
corresponding V̂ matrix from above. Form the r×r diagonal matrix Σ̂ whose diagonal entries are σ1, . . . , σr.

• Show that AV̂ = Û Σ̂.

• Explain why it follows from (d) that A = Û Σ̂V̂ T . This is the reduced SVD: in the ordinary SVD you
have square unitary matrices U and V and a non-square m× n diagonal matrix Σ.

1.2 Problem 2

Execute the following code cells in the Julia notebook, reading along, and answer the question at the end.
The following matrix represents the Iris flower dataset. Each row is a different flower (150 flowers), and

the columns are the measurements (in cm) of the lengths of four different flower parts.

In [ ]: X = [5.1 3.5 1.4 0.2; 4.9 3.0 1.4 0.2; 4.7 3.2 1.3 0.2; 4.6 3.1 1.5 0.2; 5.0 3.6 1.4 0.2; 5.4 3.9 1.7 0.4; 4.6 3.4 1.4 0.3; 5.0 3.4 1.5 0.2; 4.4 2.9 1.4 0.2; 4.9 3.1 1.5 0.1; 5.4 3.7 1.5 0.2; 4.8 3.4 1.6 0.2; 4.8 3.0 1.4 0.1; 4.3 3.0 1.1 0.1; 5.8 4.0 1.2 0.2; 5.7 4.4 1.5 0.4; 5.4 3.9 1.3 0.4; 5.1 3.5 1.4 0.3; 5.7 3.8 1.7 0.3; 5.1 3.8 1.5 0.3; 5.4 3.4 1.7 0.2; 5.1 3.7 1.5 0.4; 4.6 3.6 1.0 0.2; 5.1 3.3 1.7 0.5; 4.8 3.4 1.9 0.2; 5.0 3.0 1.6 0.2; 5.0 3.4 1.6 0.4; 5.2 3.5 1.5 0.2; 5.2 3.4 1.4 0.2; 4.7 3.2 1.6 0.2; 4.8 3.1 1.6 0.2; 5.4 3.4 1.5 0.4; 5.2 4.1 1.5 0.1; 5.5 4.2 1.4 0.2; 4.9 3.1 1.5 0.1; 5.0 3.2 1.2 0.2; 5.5 3.5 1.3 0.2; 4.9 3.1 1.5 0.1; 4.4 3.0 1.3 0.2; 5.1 3.4 1.5 0.2; 5.0 3.5 1.3 0.3; 4.5 2.3 1.3 0.3; 4.4 3.2 1.3 0.2; 5.0 3.5 1.6 0.6; 5.1 3.8 1.9 0.4; 4.8 3.0 1.4 0.3; 5.1 3.8 1.6 0.2; 4.6 3.2 1.4 0.2; 5.3 3.7 1.5 0.2; 5.0 3.3 1.4 0.2; 7.0 3.2 4.7 1.4; 6.4 3.2 4.5 1.5; 6.9 3.1 4.9 1.5; 5.5 2.3 4.0 1.3; 6.5 2.8 4.6 1.5; 5.7 2.8 4.5 1.3; 6.3 3.3 4.7 1.6; 4.9 2.4 3.3 1.0; 6.6 2.9 4.6 1.3; 5.2 2.7 3.9 1.4; 5.0 2.0 3.5 1.0; 5.9 3.0 4.2 1.5; 6.0 2.2 4.0 1.0; 6.1 2.9 4.7 1.4; 5.6 2.9 3.6 1.3; 6.7 3.1 4.4 1.4; 5.6 3.0 4.5 1.5; 5.8 2.7 4.1 1.0; 6.2 2.2 4.5 1.5; 5.6 2.5 3.9 1.1; 5.9 3.2 4.8 1.8; 6.1 2.8 4.0 1.3; 6.3 2.5 4.9 1.5; 6.1 2.8 4.7 1.2; 6.4 2.9 4.3 1.3; 6.6 3.0 4.4 1.4; 6.8 2.8 4.8 1.4; 6.7 3.0 5.0 1.7; 6.0 2.9 4.5 1.5; 5.7 2.6 3.5 1.0; 5.5 2.4 3.8 1.1; 5.5 2.4 3.7 1.0; 5.8 2.7 3.9 1.2; 6.0 2.7 5.1 1.6; 5.4 3.0 4.5 1.5; 6.0 3.4 4.5 1.6; 6.7 3.1 4.7 1.5; 6.3 2.3 4.4 1.3; 5.6 3.0 4.1 1.3; 5.5 2.5 4.0 1.3; 5.5 2.6 4.4 1.2; 6.1 3.0 4.6 1.4; 5.8 2.6 4.0 1.2; 5.0 2.3 3.3 1.0; 5.6 2.7 4.2 1.3; 5.7 3.0 4.2 1.2; 5.7 2.9 4.2 1.3; 6.2 2.9 4.3 1.3; 5.1 2.5 3.0 1.1; 5.7 2.8 4.1 1.3; 6.3 3.3 6.0 2.5; 5.8 2.7 5.1 1.9; 7.1 3.0 5.9 2.1; 6.3 2.9 5.6 1.8; 6.5 3.0 5.8 2.2; 7.6 3.0 6.6 2.1; 4.9 2.5 4.5 1.7; 7.3 2.9 6.3 1.8; 6.7 2.5 5.8 1.8; 7.2 3.6 6.1 2.5; 6.5 3.2 5.1 2.0; 6.4 2.7 5.3 1.9; 6.8 3.0 5.5 2.1; 5.7 2.5 5.0 2.0; 5.8 2.8 5.1 2.4; 6.4 3.2 5.3 2.3; 6.5 3.0 5.5 1.8; 7.7 3.8 6.7 2.2; 7.7 2.6 6.9 2.3; 6.0 2.2 5.0 1.5; 6.9 3.2 5.7 2.3; 5.6 2.8 4.9 2.0; 7.7 2.8 6.7 2.0; 6.3 2.7 4.9 1.8; 6.7 3.3 5.7 2.1; 7.2 3.2 6.0 1.8; 6.2 2.8 4.8 1.8; 6.1 3.0 4.9 1.8; 6.4 2.8 5.6 2.1; 7.2 3.0 5.8 1.6; 7.4 2.8 6.1 1.9; 7.9 3.8 6.4 2.0; 6.4 2.8 5.6 2.2; 6.3 2.8 5.1 1.5; 6.1 2.6 5.6 1.4; 7.7 3.0 6.1 2.3; 6.3 3.4 5.6 2.4; 6.4 3.1 5.5 1.8; 6.0 3.0 4.8 1.8; 6.9 3.1 5.4 2.1; 6.7 3.1 5.6 2.4; 6.9 3.1 5.1 2.3; 5.8 2.7 5.1 1.9; 6.8 3.2 5.9 2.3; 6.7 3.3 5.7 2.5; 6.7 3.0 5.2 2.3; 6.3 2.5 5.0 1.9; 6.5 3.0 5.2 2.0; 6.2 3.4 5.4 2.3; 5.9 3.0 5.1 1.8]

This data actually includes 3 different species of flower, and the goal is to figure out how to differentiate
between the species based on the above data. If we number the species 0, 1, and 2 (Iris setosa, Iris virginica
and Iris versicolor), then the following array contains the species of each row in X:
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In [ ]: species = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]

Before we do any data analysis, we should subtract the mean of all the samples (all the flowers), which
can be done efficiently in Julia via the “broadcasting” .- operations combined with the function mean(X,1)

that returns a row vector of the means of each column:

In [ ]: A = X .- mean(X,1)

Now, each flower could be viewed as a point in a four-dimensional space (i.e. the 4 measurements) called
feature space. We’d like to find out what are the important directions in this 4d space in order to explain
the variations among the individual flowers, and hopefully to identify the fact that there are three different
species.

If we just slice this 4d parameter space in a “random” direction, e.g. we plot the 4th coordinate (4th
column of A) vs the 1st coordinate (1st column of A), we just see a blob of points. The different colors are
the different species, and they are all mixed up together:

In [ ]: using PyPlot

scatter(A[:,1], A[:,4], c=species, cmap="viridis")

xlabel("sepal length (cm)")

ylabel("petal width (cm)")

Now, let’s perform some principal components analysis (PCA) to try to figure out the “right” way to
look at this data.

First, compute the SVD of this matrix A, which is equivalent to diagonalizing the covariance matrix AAT

as discussed in class (and in the book):

In [ ]: U, σ, V = svd(A)

σ

The singular values σ indicate how much of the variance is explained by each singular vector.
Given this information, you should be able to pick out two directions in 4d (two directions in feature

space, i.e. two combinations of measurements) that explain most of the variation between.
Fix the code below to compute two 150-component vectors x1 and x2, corresponding two these two

combinations of measurements for each flower, and plot x2 vs x1.
You should see that the flowers separate into three groups corresponding to the three different species:

PCA identifies the key measurements (or rather, the key combination of measurements) that explain the
variations.

In [ ]: x1 = ???

x2 = ???

scatter(x1, x2, c=species, cmap="viridis")

Print out this plot (or print to PDF or make a screenshot and attach it electronically on Stellar) and
your ??? code with your solutions.
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