
MIT 18.06 Exam 3 Solutions, Spring 2017

Problem 1:
The following matrix M is a Markov matrix (its columns sum to 1):

M =

 0.3 0.4 0.5
0.3 0.4 0.3
0.4 0.2 0.2


and its steady-state eigenvector (λ = 1) is

s =

 7/18
1/3
5/18

 .

Recall from class that multiplying a vector x by M does not change the sum of

the components. That is, the sum = oTx , where o =

 1
1
1

, is conserved:

oTMx = oTx = x1 + x2 + x3

for any x =

 x1
x2
x3

. (The steady-state vector s above was normalized so that

oT s = 1.)

(a) If we let x =

 2
0
0

, what vector does Mnx approach as n→∞?

Solution: Since this is a positive Markov matrix, all other eigenvalues
have magnitude < 1, and the solution must approach a multiple of s.
Which multiple? Well, the sum of the entries is conserved, so the sum
must equal oTx = 2. Hence Mnx→ 2s .

(b) For the same x, in what direction does (MT )nx point as n → ∞. (You
don’t have to give the correct magnitude, just give a vector in the correct
direction.)
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Solution: Similar to the previous part, except that the steady state eigen-
vector is o, since MT o = o (this is just the statement that the columns

of M sum to 1, written in matrix form). Hence (MT )nx→ αo for some
scalar coefficient α. (From the solution of the next part, we must have

sT (αo) = sTx, and we can compute α =
sTx

sT o
= 7/9 . You weren’t re-

quired to do this, however.)

(c) Multiplying MTx does not conserve the sum of the components of x,
unlike Mx. However, it does conserve some linear combination of the
components: there is some vector v 6= 0 such that

vTMTx = vTx

for all x. What is v? (Hint: this is easy if you understand why oTMx =
oTx as stated above.)

Solution: The reason why oTMx = oTx was simply that o is an eigen-
vector of MT with eigenvalue λ = 1 (a “left eigenvector” of M). Here, we
need a similar eigenvector ofM , and we have one: v = s (or any multiple
of s), since sTMTx = (Ms)Tx = sTx.

(Erratum: the problem originally failed to specify v 6= 0, in which case
v = 0 is a valid, if trivial, solution.)

Problem 2:
Suppose that A is a 3 × 3 real-symmetric matrix with eigenvalues λ1 = 1,
λ2 = −1, λ3 = −2, and corresponding eigenvectors x1, x2, x3. You are given

that x1 =

 1
0
1

.

(a) Give an approximate solution at t = 100 to dx
dt = Ax for x(0) = (1, 1, 0).

(You should give a specific vector, even if the vector is very big or very
small — an answer of “≈ 0” or “≈ ∞” is not acceptable.)

Solution: If we write x(t) = c1x1e
t + c2x2e

−t + c3x3e
−2t, then for

t = 100 it is clear that the c1 term dominates. Furthermore, since A
is real-symmetric, the eigenvectors must be orthogonal, and hence 1 =

xT1 x(0) = c1x
T
1 x1 = 2c1, or c1 = 0.5. Hence x(100) ≈ 0.5e100x1 .

(b) If x2 =

 0
1
0

, what is x3? (You should not need your answer here to

solve the previous part!)
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Solution: Since x3 must be orthogonal to x1 and x2 (A is real-symmetric

with distinct λ’s), the only possibility is x3 =

 1
0
−1

 or some nonzero

multiple thereof.

(c) If instead we solve dx
dt = (αI − A3)x for some complex number αand the

same x(0), give a possible value of α for which the solutions x(t) approach
oscillating solutions (but not decaying or growing!) for large t.

Solution: The eigenvalues of αI − A3 are α − λ3k, or α − 1, α + 1, and
α+8 (with the same eigenvectors). To have oscillating solutions at a large
t, one of these eigenvalues must be purely imaginary, and the other eigen-
values must have negative real parts. So, we must have Re(α) = −8 (to
cancel the real part of the largest term), and some imaginary part (any
imaginary part we want). Hence, the allowed solutions are α = −8 + iω
for any real ω 6= 0 (e.g. ω = 1 is fine).

Problem 3:
The real 3× 3 matrix A is positive-definite, and the real 3× 4 matrix B is rank
3:

B =

 1 1 0 2
2 −1 1 2
1 0 0 1

 .

The nullspace N(B) is spanned by the vector x0 =


1
1
1
−1

.

(a) How many zero, positive, and negative eigenvalues does BTAB have?
(Hint: what happens if you plug an eigenvector into xT (BTAB)x?)

Solution: If BTABx = λx , then xTBTABx = λxTx = yTAy where
y = Bx . xTx > 0, and because A is positive-definite we know that
yTAy ≥ 0, so it immediately follows that λ ≥ 0. Furthermore, yTAy = 0
only if y = 0, i.e. x ∈ N(B). Since N(B) is one-dimensional, this means
that there is only one zero eigenvalue (with eigenvector x0) and the
remaining three eigenvalues are positive. (There are four eigenval-
ues because BTAB is a 4 × 4 matrix. Of course, it is possible that some
of the positive three eigenvalues are repeated, e.g. if A = I .)

In fact, BTAB is positive semidefinite for any real B and any positive-
definite A, and nullspace is the same as B.
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(b) For which sign (+ or −) does dxdt = ±BTABx have solutions that approach
a constant steady state for any initial condition x(0)?

Solution: −. This way, the positive eigenvalues from above give decaying
solutions, and the zero eigenvalue gives a steady state.

(c) For the sign you chose in the previous part, what is x(∞) for x(0) =
1
0
0
0

?

Solution: Since BTAB is real-symmetric, the eigenvalues are orthogo-
nal, and we can get the steady-state (λ = 0) component (given by the
null-space vector x0 given above) just by a dot product (the projection of
x(0) onto x0):

x(∞) =
x0x

T
0 x(0)

xT0 x0
= x0

1

4
=

1

4


1
1
1
−1

 .

Problem 4:
True or false. Give a reason if true (one sentence and/or one equation should
suffice), or a counterexample if false.

(a) A singular matrix A cannot be similar to a non-singular matrix B.

True. Similar matrices have the same eigenvalues, but B must have a
zero eigenvalue and A must have nonzero eigenvalues.

(b) Any positive markov matrix M (that is, positive entries) must also be
positive definite.

False. There are many ways to construct a counterexample without doing
a lot of calculations. Every positive-definite matrix by definition must be
Hermitian, so it is sufficient to give a non-symmetric Markov matrix, e.g.
the one from problem 1. Even if the Markov matrix is real-symmetric,
it can still have negative eigenvalues with magnitude < 1. For example,

start with the Markov matrix
(

0 1
1 0

)
, which has eigenvalues ±1, then

add 0.5I to it to make a positive matrix
(

0.5 1
1 0.5

)
with eigenvalues

−0.5 and 1.5, then divide by 1.5 (the sum of the columns) to make it a

positive Markov matrix
(

1
3

2
3

2
3

1
3

)
with eigenvalues − 1

3 and 1.

4



(c) If A = QR is the QR factorization of a real (square) matrix A, then the
matrix RQ has the same eigenvalues as A.

True. A = QR =⇒ R = Q−1A = QTA =⇒ RQ = Q−1AQ, which is
similar to A.

(Clarification: The problem did not originally specify that A was square,
but this is automatically implied by the statement that A has eigenvalues,
which are only defined for square matrices.)

(d) A and eA
3

have the same eigenvalues.

False. If Ax = λx, then eA
3

x = eλ
3

x, and eλ
3 6= λ in general. For

example, consider the 1× 1 matrix A = 0 with a single eigenvalue λ = 0 ,
then eA

3

= e0 = 1 has only the eigenvalue 1 6= 0.

(e) A and eA
3

have the same eigenvectors.

True. Ax = λx, then eA
3

x = eλ
3

x, so x is also an eigenvector of eA
3

.
(The converse also works.)
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