MIT 18.06 Exam 3 Solutions, Spring 2017

Problem 1:

The following matrix M is a Markov matrix (its columns sum to 1):

$$
M=\left(\begin{array}{lll}
0.3 & 0.4 & 0.5 \\
0.3 & 0.4 & 0.3 \\
0.4 & 0.2 & 0.2
\end{array}\right)
$$

and its steady-state eigenvector $(\lambda=1)$ is

$$
s=\left(\begin{array}{c}
7 / 18 \\
1 / 3 \\
5 / 18
\end{array}\right)
$$

Recall from class that multiplying a vector x by M does not change the sum of the components. That is, the sum $=o^{T} x$, where $o=\left(\begin{array}{c}1 \\ 1 \\ 1\end{array}\right)$, is conserved:

$$
o^{T} M x=o^{T} x=x_{1}+x_{2}+x_{3}
$$

for any $x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$. (The steady-state vector s above was normalized so that $o^{T} s=1$.)
(a) If we let $x=\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right)$, what vector does $M^{n} x$ approach as $n \rightarrow \infty$?

Solution: Since this is a positive Markov matrix, all other eigenvalues have magnitude <1, and the solution must approach a multiple of s. Which multiple? Well, the sum of the entries is conserved, so the sum must equal $o^{T} x=2$. Hence $M^{n} x \rightarrow 2 s$.
(b) For the same x, in what direction does $\left(M^{T}\right)^{n} x$ point as $n \rightarrow \infty$. (You don't have to give the correct magnitude, just give a vector in the correct direction.)

Solution: Similar to the previous part, except that the steady state eigenvector is o, since $M^{T} o=o$ (this is just the statement that the columns of M sum to 1 , written in matrix form). Hence $\left(M^{T}\right)^{n} x \rightarrow \alpha o$ for some scalar coefficient α. (From the solution of the next part, we must have $s^{T}(\alpha o)=s^{T} x$, and we can compute $\alpha=\frac{s^{T} x}{s^{T} o}=7 / 9$. You weren't required to do this, however.)
(c) Multiplying $M^{T} x$ does not conserve the sum of the components of x, unlike $M x$. However, it does conserve some linear combination of the components: there is some vector $v \neq 0$ such that

$$
v^{T} M^{T} x=v^{T} x
$$

for all x. What is v ? (Hint: this is easy if you understand why $o^{T} M x=$ $o^{T} x$ as stated above.)

Solution: The reason why $o^{T} M x=o^{T} x$ was simply that o is an eigenvector of M^{T} with eigenvalue $\lambda=1$ (a "left eigenvector" of M). Here, we need a similar eigenvector of M, and we have one: $v=s$ (or any multiple of s), since $s^{T} M^{T} x=(M s)^{T} x=s^{T} x$.
(Erratum: the problem originally failed to specify $v \neq 0$, in which case $v=0$ is a valid, if trivial, solution.)

Problem 2:

Suppose that A is a 3×3 real-symmetric matrix with eigenvalues $\lambda_{1}=1$, $\lambda_{2}=-1, \lambda_{3}=-2$, and corresponding eigenvectors x_{1}, x_{2}, x_{3}. You are given that $x_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$.
(a) Give an approximate solution at $t=100$ to $\frac{d x}{d t}=A x$ for $x(0)=(1,1,0)$. (You should give a specific vector, even if the vector is very big or very small - an answer of " ≈ 0 " or " $\approx \infty$ " is not acceptable.)

Solution: If we write $x(t)=c_{1} x_{1} e^{t}+c_{2} x_{2} e^{-t}+c_{3} x_{3} e^{-2 t}$, then for $t=100$ it is clear that the c_{1} term dominates. Furthermore, since A is real-symmetric, the eigenvectors must be orthogonal, and hence $1=$ $x_{1}^{T} x(0)=c_{1} x_{1}^{T} x_{1}=2 c_{1}$, or $c_{1}=0.5$. Hence $x(100) \approx 0.5 e^{100} x_{1}$.
(b) If $x_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, what is x_{3} ? (You should not need your answer here to solve the previous part!)

Solution: Since x_{3} must be orthogonal to x_{1} and $x_{2}(A$ is real-symmetric with distinct λ 's), the only possibility is $x_{3}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$ or some nonzero multiple thereof.
(c) If instead we solve $\frac{d x}{d t}=\left(\alpha I-A^{3}\right) x$ for some complex number α and the same $x(0)$, give a possible value of α for which the solutions $x(t)$ approach oscillating solutions (but not decaying or growing!) for large t.

Solution: The eigenvalues of $\alpha I-A^{3}$ are $\alpha-\lambda_{k}^{3}$, or $\alpha-1, \alpha+1$, and $\alpha+8$ (with the same eigenvectors). To have oscillating solutions at a large t, one of these eigenvalues must be purely imaginary, and the other eigenvalues must have negative real parts. So, we must have $\operatorname{Re}(\alpha)=-8$ (to cancel the real part of the largest term), and some imaginary part (any imaginary part we want). Hence, the allowed solutions are $\alpha=-8+i \omega$ for any real $\omega \neq 0$ (e.g. $\omega=1$ is fine).

Problem 3:

The real 3×3 matrix A is positive-definite, and the real 3×4 matrix B is rank 3:

$$
B=\left(\begin{array}{cccc}
1 & 1 & 0 & 2 \\
2 & -1 & 1 & 2 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

The nullspace $N(B)$ is spanned by the vector $x_{0}=\left(\begin{array}{c}1 \\ 1 \\ 1 \\ -1\end{array}\right)$.
(a) How many zero, positive, and negative eigenvalues does $B^{T} A B$ have? (Hint: what happens if you plug an eigenvector into $x^{T}\left(B^{T} A B\right) x$?)

Solution: If $B^{T} A B x=\lambda x$, then $x^{T} B^{T} A B x=\lambda x^{T} x=y^{T} A y$ where $y=B x \cdot x^{T} x>0$, and because A is positive-definite we know that $y^{T} A y \geq 0$, so it immediately follows that $\lambda \geq 0$. Furthermore, $y^{T} A y=0$ only if $y=0$, i.e. $x \in N(B)$. Since $N(B)$ is one-dimensional, this means that there is only one zero eigenvalue (with eigenvector x_{0}) and the remaining three eigenvalues are positive. (There are four eigenvalues because $B^{T} A B$ is a 4×4 matrix. Of course, it is possible that some of the positive three eigenvalues are repeated, e.g. if $A=I$.)

In fact, $B^{T} A B$ is positive semidefinite for any real B and any positivedefinite A, and nullspace is the same as B.
(b) For which $\operatorname{sign}(+$ or -$)$ does $\frac{d x}{d t}= \pm B^{T} A B x$ have solutions that approach a constant steady state for any initial condition $x(0)$?

Solution: -. This way, the positive eigenvalues from above give decaying solutions, and the zero eigenvalue gives a steady state.
(c) For the sign you chose in the previous part, what is $x(\infty)$ for $x(0)=$ $\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$?
Solution: Since $B^{T} A B$ is real-symmetric, the eigenvalues are orthogonal, and we can get the steady-state $(\lambda=0)$ component (given by the null-space vector x_{0} given above) just by a dot product (the projection of $x(0)$ onto $\left.x_{0}\right)$:

$$
x(\infty)=\frac{x_{0} x_{0}^{T} x(0)}{x_{0}^{T} x_{0}}=x_{0} \frac{1}{4}=\frac{1}{4}\left(\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right)
$$

Problem 4:

True or false. Give a reason if true (one sentence and/or one equation should suffice), or a counterexample if false.
(a) A singular matrix A cannot be similar to a non-singular matrix B.

True. Similar matrices have the same eigenvalues, but B must have a zero eigenvalue and A must have nonzero eigenvalues.
(b) Any positive markov matrix M (that is, positive entries) must also be positive definite.

False. There are many ways to construct a counterexample without doing a lot of calculations. Every positive-definite matrix by definition must be Hermitian, so it is sufficient to give a non-symmetric Markov matrix, e.g. the one from problem 1. Even if the Markov matrix is real-symmetric, it can still have negative eigenvalues with magnitude <1. For example, start with the Markov matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, which has eigenvalues ± 1, then add $0.5 I$ to it to make a positive matrix $\left(\begin{array}{cc}0.5 & 1 \\ 1 & 0.5\end{array}\right)$ with eigenvalues -0.5 and 1.5 , then divide by 1.5 (the sum of the columns) to make it a positive Markov matrix $\left(\begin{array}{cc}\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3}\end{array}\right)$ with eigenvalues $-\frac{1}{3}$ and 1 .
(c) If $A=Q R$ is the QR factorization of a real (square) matrix A, then the matrix $R Q$ has the same eigenvalues as A.

True. $A=Q R \Longrightarrow R=Q^{-1} A=Q^{T} A \Longrightarrow R Q=Q^{-1} A Q$, which is similar to A.
(Clarification: The problem did not originally specify that A was square, but this is automatically implied by the statement that A has eigenvalues, which are only defined for square matrices.)
(d) A and $e^{A^{3}}$ have the same eigenvalues.

False. If $A x=\lambda x$, then $e^{A^{3}} x=e^{\lambda^{3}} x$, and $e^{\lambda^{3}} \neq \lambda$ in general. For example, consider the 1×1 matrix $A=0$ with a single eigenvalue $\lambda=0$, then $e^{A^{3}}=e^{0}=1$ has only the eigenvalue $1 \neq 0$.
(e) A and $e^{A^{3}}$ have the same eigenvectors.

True. $A x=\lambda x$, then $e^{A^{3}} x=e^{\lambda^{3}} x$, so x is also an eigenvector of $e^{A^{3}}$. (The converse also works.)

