
Statistics-and-PCA

September 7, 2017

In [1]: using PyPlot

1 Mean and variance

Suppose we have a black box (a distribution) that generates data points xk (samples) k = 1, . . . ,. If we
have n data points, the sample mean m is simply the average:

m =
1

n

∞∑
k=1

xk

In the limit n → ∞, we get the mean µ of the underlying distribution from which the samples are
generated.

The sample variance S2 is the mean-square deviation from the mean:

Var(x) = S2 =
1

n− 1

∞∑
k=1

(xk −m)2

where the denominator n − 1 is Bessel’s correction. The limit n → ∞ of the sample variance gives σ2,
the variance of the underlying distribution, and by using n− 1 instead of n in the denominator it turns out
that we get a better estimate of σ2 when n is not huge.

For example, the randn() function in Julia draws samples from a normal distribution: a Gaussian or
“bell curve” with mean zero and variance 1:

In [2]: x = randn(100) # 100 gaussian random numbers:

plot(x, zeros(x),"r.")

grid()

1

https://en.wikipedia.org/wiki/Bessel%27s_correction
https://en.wikipedia.org/wiki/Normal_distribution


It is more informative to plot a histogram:

In [3]: x = randn(10000)

plt[:hist](x, bins=100);

2

https://en.wikipedia.org/wiki/Histogram


The mean is the center of this peak and the square root S of the variance is a measure of the width of
this peak.

The mean of those 10000 samples is a pretty good estimate for the true mean (= 0) of the underlying
normal distribution:

In [4]: mean(x)

Out[4]: -0.011081208688453203

The sample variance is:

In [5]: sum((x-mean(x)).^2)/(length(x)-1)

Out[5]: 1.0040402892748792

Or (equivalently but more efficient) the built-in function var:

In [6]: var(x)

Out[6]: 1.0040402892748792

which is a pretty good estimate for the true variance (= 1).
If we looked at more points, we would get better estimates:

In [7]: xbig = randn(10^7)

mean(xbig), var(xbig)

Out[7]: (6.320131515417326e-5,0.9991775483644516)

3



1.1 Mean and variance in linear algebra

If we define the vector o = (1, 1, . . .) to be the vector of n 1’s, with oT o = n, then the mean of x is:

m =
oTx

oT o

which is simply the projection of x onto o. And the sample variance is

Var(x) =
‖x−mo‖2

n− 1
=

∥∥∥(I − ooT

oT o

)
x
∥∥∥2

n− 1

is the length2 of the projection of x [U+27C2] to o divided by n− 1.
In fact, the n− 1 denominator is closely related to the fact that this orthogonal projection “lives” in an

n− 1 dimensional space: after you subtract off the mean, there are only n− 1 degrees of freedom left. (This
is just a handwaving argument; for more careful derivations of this denominator, see e.g. Bessel’s correction
on Wikipedia.)

2 Covariance and Correlation

A key question in statistics is whether/how two sets of data are correlated. If you have two variables x
and y, do they tend to “move together”?

An intuitive measure for this is: when x is greater/less than its mean, is y also greater/less
than its mean? Translated into math, this leads to the covariance:

Covar(x, y) =
1

n− 1

n∑
k=1

(xk −mean(x))(yk −mean(y)) =
(Px)T (Py)

n− 1
=
xTPy

n− 1

where P = I − ooT

oT o
is the projection operator from above that subtracts the mean from a vector (i.e. it

projects vectors onto the subspace of vectors with zero mean). (In the last step we used the facts that
PT = P and P 2 = P .)

For example, here are plots of two very correlated vectors x and y of data and a third data set z that is
just independent random numbrers

In [8]: x = sin(linspace(0,4π,100) + randn(100)*0.1) .* (1 + 0.3*randn(100))

y = sin(linspace(0,4π,100) + randn(100)*0.1) .* (1 + 0.3*randn(100))

z = randn(100)

plot(x, "b.-")

plot(y, "r.-")

plot(z, "g.-")

legend(["x","y","z"])

4

https://en.wikipedia.org/wiki/Bessel%27s_correction


Out[8]: PyObject <matplotlib.legend.Legend object at 0x3290bc690>

All three have mean nearly zero:

In [9]: mean(x),mean(y),mean(z)

Out[9]: (-0.020601421221630608,-0.0011893930679909397,-0.06415236608580241)

But the covariance of x and y is totally different from the covariance of x and z:

In [10]: # A simple covariance function. See https://github.com/JuliaStats/StatsBase.jl for

# better statistical functions in Julia.

covar(x,y) = dot(x - mean(x), y - mean(y)) / (length(x) - 1)

Out[10]: covar (generic function with 1 method)

In [11]: covar(x,y), covar(x,z)

Out[11]: (0.4940689175964578,-0.07312995881233886)

The variance and covariance have the units of the data squared. I can make the covariance of x and y
smaller simply by dividing y by 10, which doesn’t see like a good measure of how correlated they are.

Often, it is nicer to work with a dimensionless quantity independent of the vector lengths, the correlation:

Cor(x, y) =
Covar(x, y)√

Var(x)×Var(y)
=

(Px)T (Py)

‖Px‖ × ‖Py‖

This is just the dot product of the vectors (after subtracting their means) divided by their lengths.
It turns out that Julia has a built-in function cor that compute precisely this:

5



In [12]: covar(x,y) / sqrt(covar(x,x) * covar(y,y)) # correlation, manually computed

Out[12]: 0.935143359379067

In [13]: cor(x,y)

Out[13]: 0.9351433593790669

In [14]: cor(x,z)

Out[14]: -0.08605379904360413

In [15]: abs(cor(x,y)/cor(x,z))

Out[15]: 10.866961944413662

Now that we’ve scaled out the overall length of the vectors, we can sensibly compare the correlation of
x,y with the correlation of x,z, and we see that the former are more than 10x the correlation of the latter in
this sample

3 The covariance and correlation matrices

If we have a bunch of data sets, we might want the covariance or correlation of every pair of data sets.
Since these are basically dot products, asking for all of the dot products is the same as asking for a matrix
multiplication.

In particular, suppose that X is the m×n matrix whose rows are n different datasets of length n. First,
we need to subtract off the means of each row to form a new matrix A:

A = XP = XPT = (PXT )T

where P is the projection matrix from above that subtracts the mean. Multiplying by PT = P on the
right corresponds to projecting each row of X.

Given A, we can compute all of the covariances simply by computing the covariance matrix S

S =
AAT

n− 1

since AAT computes all of the dot products of all of the rows of A. The diagonal entries of S are the
variances of each dataset, and the off-diagonal elements are the covariances.

Alternatively, we can compute the correlation matrix C = ÂÂT , where Â is simply the matrix A
scaled so that each row has unit length. i.e. Â = DA, where D is a diagonal matrix whose entries are the
inverse of the length of each row, i.e. D is the inverse of the diagonal entries of AAT .

Let’s look in more detail at the two correlated vectors x and y from above:

In [16]: plot(x,y, ".")

xlabel("x")

ylabel("y")

axhline(0, linestyle="--", color="k", alpha=0.2)

axvline(0, linestyle="--", color="k", alpha=0.2)

6



Out[16]: PyObject <matplotlib.lines.Line2D object at 0x329302910>

The correlation matrix is:

In [17]: A = [x’ - mean(x); y’ - mean(y)] # rows are x and y with means subtracted

Out[17]: 2×100 Array{Float64,2}:
-0.0136799 0.194767 0.153322 ... -0.255841 -0.131478 0.00542467

-0.0379629 -0.0412615 0.0632018 -0.169123 -0.0637059 0.0591737

In [18]: S = A * A’ / (length(x)-1)

Out[18]: 2×2 Array{Float64,2}:
0.579931 0.494069

0.494069 0.481329

In this case, since there are only two datasets, S is just a 2× 2 matrix.

4 PCA: diagonalizing the covariance matrix

A key question in analyizing data analysis is to figure out which variables are responsible for most
of the variation in the data. These may not be the variables you measured, but may instead be some
linear combination of the measured variables!

Mathematically, this corresponds to diagonalizing the covariance (or correlation) matrix:

7



• S is real-symmetric and positive-definite (or at least semidefinite), so diagonalization S = QΛQT finds
real, positive eigenvalues λk = σ2

k ≥ 0 and an orthonormal basis Q of eigenvectors.

• The eigenvectors form a coordinate system in which the covariance matrix S becomes diagonal,
i.e. a coordinate system in which the variables are uncorrelated.

• The diagonal entries in this coordinate system, the eigenvalues, are the variances of these uncor-
related components.

This process of diagonalizing the covariance matrix is called principal component analysis, or PCA.
Let’s try it:

In [19]: σ2, Q = eig(S)

Out[19]: ([0.0341076,1.02715],

[0.671084 -0.741381; -0.741381 -0.671084])

We see that the second eigenvector is responsible for almost all of the variation in the data, because its
eigenvalue (the variance σ2) is much larger:

In [20]: σ2

Out[20]: 2-element Array{Float64,1}:
0.0341076

1.02715

Let’s plot these two eigenvectors on top of our data:

In [21]: plot(x-mean(x),y-mean(y), ".")

xlabel("x")

ylabel("y")

axhline(0, linestyle="--", color="k", alpha=0.2)

axvline(0, linestyle="--", color="k", alpha=0.2)

arrow(0,0, Q[:,1]..., head_width=0.1, color="r")

arrow(0,0, Q[:,2]..., head_width=0.1, color="r")

text(Q[1,1]+0.1,Q[2,1], "q1", color="r")

text(Q[1,2]-0.2,Q[2,2], "q2", color="r")

axis("equal")

8

https://en.wikipedia.org/wiki/Principal_component_analysis


Out[21]: (-1.3857420714936417,1.5314737916078676,-1.371642469431078,1.3080133686711006)

The q2 direction, corresponding to the biggest eigenvalue of the covariance matrix, is indeed the direction
with the biggest variation in the data!

In this case, it is along the (1,1) direction because x and y tend to move together.
The other direction q1 is the other uncorrelated (= orthogonal) direction of variation in the data. Not

much is going on in that direction.
(In fact, this q2 can be viewed as a kind of “best fit” line which the Strang book calls perpendicular least

squares, and is also called Deming regression.)

5 PCA and the SVD

Instead of forming AAT and diagonalizing that, we can equivalently (in the absence of roundoff errors) us
the singular value decomposition (SVD) of A/

√
n− 1. Recall the SVD

A√
n− 1

= UΣV T

where U and V are orthogonal matrices and Σ =

σ1 σ2
. . .

 is a diagonal m × n matrix of the

singular values σk.
Then, if we compute the covariance matrix , we get:

9

http://mathworld.wolfram.com/LeastSquaresFittingPerpendicularOffsets.html
http://mathworld.wolfram.com/LeastSquaresFittingPerpendicularOffsets.html
https://en.wikipedia.org/wiki/Deming_regression


S =
AAT

n− 1
= (UΣV T )(UΣV T )T = UΣV TV ΣTUT = UΣΣTUT

Since ΣΣT is a diagonal matrix of the squares σ2
k of the singular values σk, we find:

• The squares σ2
k of the singular values are the variances of the uncorrelated components of the data

(the eigenvalues of S).
• The left singular vectors U are precisely the orthonormal eigenvectors of AAT , i.e. the uncorrelated

components of the data.

In practice, PCA typically uses the SVD directly rather than explicitly forming the covariance matrix S.
(It turns out that computing AAT explicitly exacerbates sensitivity to rounding errors and other errors in
A.)

In [22]: U, σ, V = svd(A / sqrt(length(x)-1))

Out[22]: (

[-0.741381 -0.671084; -0.671084 0.741381],

[1.01349,0.184682],

[0.00353214 -0.0103205; -0.0115734 -0.0877767; ... ; 0.0139059 0.0223135; -0.00433678 0.021893])

In [23]: σ.^2

Out[23]: 2-element Array{Float64,1}:
1.02715

0.0341076

As promised, this is the same as the eigenvalues of S from above.
Conveniently, the convention for the SVD is to sort the singular values in descending order σ1 ≥ σ2 ≥ · · ·.

So, the first singular value/vector represents most of the variation in the data, and so on.

In [24]: U

Out[24]: 2×2 Array{Float64,2}:
-0.741381 -0.671084

-0.671084 0.741381

In [25]: plot(x-mean(x),y-mean(y), ".")

xlabel("x")

ylabel("y")

axhline(0, linestyle="--", color="k", alpha=0.2)

axvline(0, linestyle="--", color="k", alpha=0.2)

arrow(0,0, U[:,1]..., head_width=0.1, color="r")

arrow(0,0, U[:,2]..., head_width=0.1, color="r")

text(U[1,2]+0.1,U[2,1], "u1", color="r")

text(U[1,2]+0.2,U[2,2], "u2", color="r")

axis("equal")

10



Out[25]: (-1.3857420714936417,1.5314737916078676,-1.371642469431078,1.3080133686711006)

There is an irrelevant sign flip from before (the signs of the eigenvectors and singular vectors are arbitrary),
but otherwise it is the same.

11


