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In [1]: using Interact, PyPlot

1 Exponential growth and decay

Consider the following system of two coupled first-order ordinary differential equations (ODEs):

d~x/dt = A~x

for the 2×2 matrix:

A =

(
0.1 −0.1
0.5 −1

)
In [2]: A = [ 0.1 -0.1

0.5 -1 ]

Out[2]: 2×2 Array{Float64,2}:
0.1 -0.1

0.5 -1.0

To start with, let’s “blindly” just plot the “brute-force” solutions for an initial condition ~x(0) = (1, 10):

In [3]: t = linspace(0, 20, 1000)

# find solution by the brute-force e[U+1D2C][U+1D57] [1,10]:

x = [expm(A*t)*[1,10] for t in t]

plot(t, [x[1] for x in x], "r-")

plot(t, [x[2] for x in x], "b-")

xlabel(L"time $t$")

ylabel(L"solution $x(t)$")

legend([L"x_1", L"x_2"])

title("solution of 2 coupled ODEs")

grid()
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At first, it looks like the solutions are decaying, but then they start to grow. If we plot it for a longer
time, we can see that it eventually grows exponentially:

In [4]: t = linspace(0, 100, 1000)

# find solution by the brute-force e[U+1D2C][U+1D57] [1,10]:

x = [expm(A*t)*[1,10] for t in t]

plot(t, [x[1] for x in x], "r-")

plot(t, [x[2] for x in x], "b-")

xlabel(L"time $t$")

ylabel(L"solution $x(t)$")

legend([L"x_1", L"x_2"])

title("solution of 2 coupled ODEs")

grid()
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To understand this problem, we need only look at the eigenvalues and eigenvectors of A.
Since this is 2 × 2, we could solve for them analytically via a quadratic equation, but let’s just do

it numerically. (Partly because I am lazy, partly because the details of solving for the eigenvalues are
unininteresting, and partly because in larger problems we will have no choice but to do it numerically
anyway.)

In [5]: λ, X = eig(A)

λ

Out[5]: 2-element Array{Float64,1}:
0.0524938

-0.952494

In [6]: X

Out[6]: 2×2 Array{Float64,2}:
0.903256 0.0945865

0.429103 0.995517

There are two eigenvalues, λ1 ≈ 0.05 and λ2 ≈ −0.95. We can expand any solution in the basis of the
eigenvectors as:

~x(t) = c1e
λ1t~x1 + c2e

λ2t~x2

where the coefficients c1 and c2 are typically determined by suppling an initial condition ~x(0): ~c =
X−1~x(0).
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(It is easy to verify that this solves d~x/dt = A~x just by plugging it in to the ODE.)
From the eigenvalues, we can easily see that the ~x1 solution is slowly exponentially growing and the ~x2

solution is quickly exponentially decaying. That’s why, when we plot the solution, we see a rapid exponential
decay followed by a slow exponential growth.

Furthermore, we can solve for the coefficients when ~x(0) = (1, 10):

In [7]: c = X \ [1, 10]

Out[7]: 2-element Array{Float64,1}:
0.0578278

10.0201

Notice that this initial condition “happens” to almost entirely consist of the ~x2 eigenvector, with only
a small ~x1 component. This means that it takes an especially long time for the eλ1t exponential growth to
amplify the ~x1 component to the point where it becomes obvious on the plot of the solution.

1.0.1 Key points

• Negative real λ correspond to exponentially decaying solutions.
• Positive real λ correspond to exponentially growing solutions.
• Zero real λ correspond to steady solutions (neither decaying nor growing).
• The initial conditions determine the coefficients of each eigenvector in the solution.

2 A mass and spring

Let’s consider the motion of a mass m sliding without friction and attached to a spring:
Newton’s law for the position x(t) gives the 2nd-order (has up to 2nd derivatives) ordinary differential

equation (ODE):

m
d2x

dt2
= −kx

where k is the spring constant. We can instead write this in terms of a system of first-order (1st derivatives
only) ODEs by adding a variable v = dx/dt (the velocity):

dx

dt
= v

dv

dt
= − k

m
x

which can be written in matrix form as d~x/dt = Ax:

d

dt

(
x
v

)
︸︷︷︸

~x=

(
0 1

−k/m 0

)
︸ ︷︷ ︸

A

~x

Let’s choose k/m = 1/100. Then we have

In [8]: A = [ 0 1

-0.01 0 ]

Out[8]: 2×2 Array{Float64,2}:
0.0 1.0

-0.01 0.0

If we have an initial position x(0) = 0 and an initial velocity v(0) = 1, so that ~x(0) = (0, 1), the solutions
x(t) look like:
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In [9]: t = linspace(0, 20π*5, 1000)

# find solution by the brute-force e[U+1D2C][U+1D57] [0,1]:

plot(t, [(expm(A*t)*[0,1])[1] for t in t], "r-")

xlabel(L"time $t$")

ylabel(L"solution $x(t)$")

title("motion of a frictionless mass on a spring")

grid()

The key to understanding this behavior is to look at the eigenvalues of A, because each eigenvector has
time dependence eλt.

A has eigenvalues λ1 = 0.1i, λ2 = −0.1i, which can easily be computed by hand or via computer:

In [10]: λ, X = eig(A)

λ

Out[10]: 2-element Array{Complex{Float64},1}:
0.0+0.1im

0.0-0.1im

The correpsonding eigenvectors are complex as well, but come in a complex conjugate pair since A is
real:

In [11]: X

Out[11]: 2×2 Array{Complex{Float64},2}:
0.995037+0.0im 0.995037-0.0im

0.0+0.0995037im 0.0-0.0995037im
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If we expand our initial condition in this basis, we have:

~x(0) =

(
0
1

)
= c1~x1 + c2~x2 = X~c

where ~c = X−1~x(0) is:

In [12]: c = X \ [0, 1]

Out[12]: 2-element Array{Complex{Float64},1}:
0.0-5.02494im

0.0+5.02494im

Note that the coefficients are complex conjugates as well!
In fact, this must happen in order to get a real vector from the sum of our two complex-conjugate

eigenvectors. Adding two complex conjugates cancels the imaginary parts and gives us twice the real part:

~x(0) = c1~x1 + c1~x1 = 2 Re[c1~x1]

which is real. Any coefficient c2 6= c1 would not have summed to a real vector. Let’s check this formula
(real computes the real part in Julia):

In [13]: 2*real(c[1]*X[:,1])

Out[13]: 2-element Array{Float64,1}:
0.0

1.0

Now, for the eigenvectors, the matrix A acts just like a scalar λ, and the solution of the scalar ODE
dc/dt = λc is just eλtc(0).

So, we just multiply each eigenvector component of ~x(0) by eλt and sum to get the solution:

~x(t) = c1e
λ1t~x1 + c2e

λ2t~x2 = c1e
λ1t~x1 + c1eλ1t~x1 = 2 Re

[
c1e

λ1t~x1
]

where we have used the fact that the eigenvalues are complex conjugates.
Now, let’s try to write this in some more comprehensible form. The position x(t) is just the first

component of this result, i.e. it is some value of the form:

x(t) = Re
[
ξeλ1t

]
where ξ = 2c1(1, 0)Tx1 is the first component of the coefficient vector. If we write ξ = reiφ in polar form,

this simplifies even more:

In [14]: ξ = 2 * c[1] * X[1,1]

Out[14]: 0.0 - 10.000000000000002im

In [15]: # polar form of α:
r = abs(ξ)

φ = angle(ξ)

r, φ/π

Out[15]: (10.000000000000002,-0.5)

In terms of this, we have:

x(t) = Re
[
rei(0.1t+φ)

]
= r cos(0.1t+ φ)

using Euler’s identity eiθ = cos θ+i sin θ. Let’s check this by plotting it along with the numerical solution:
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In [16]: t = linspace(0, 20π*5, 1000)

# find solution by the brute-force e[U+1D2C][U+1D57] [0,1]:

plot(t, [(expm(A*t)*[0,1])[1] for t in t], "r-")

plot(t, [r*cos(0.1*t + φ) for t in t], "k--")

xlabel(L"time $t$")

ylabel(L"solution $x(t)$")

title("motion of a frictionless mass on a spring")

grid()

legend(["numerical", "analytical"])

Out[16]: PyObject <matplotlib.legend.Legend object at 0x32d4a0990>

Yup, they fall right on top of one another!

2.0.1 Key points:

• A purely imaginary λ corresponds to an oscillating ODE solution, and ω = Imλ is the
angular frequency.

• The amplitude and phase of the oscillations are determined by the initial conditions.

• For real A, the eigensolutions come in complex-conjugate pairs, so that real initial conditions
lead to real solutions.

Given an angular frequency ω, corresponding to time dependence eiωt or cos(ωt+ φ), the period of the
oscillation (the time to repeat) is 2π/ω:
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In [17]: 2π/0.1

Out[17]: 62.83185307179586

Here, it repeats every 62 time units, which matches the graph above.

3 Mass and spring with damping

We can also add some damping or friction to the problem. For example, a simple model of air resistance is
a drag force that is proportional to velocity and opposite in sign.

This changes our equations to:

dx

dt
= v

dv

dt
= − k

m
x− dv

where d is the drag coefficient, which can again be written in matrix form as d~x/dt = Bx:

d

dt

(
x
v

)
︸︷︷︸

~x=

(
0 1

−k/m −d

)
︸ ︷︷ ︸

B

~x

Let’s try it out for a drag coefficent d = 0.02:

In [18]: B = [ 0 1

-0.01 -0.02 ]

Out[18]: 2×2 Array{Float64,2}:
0.0 1.0

-0.01 -0.02

In [19]: t = linspace(0, 20π*5, 1000)

# find solution by the brute-force e[U+1D2C][U+1D57] [0,1]:

plot(t, [(expm(B*t)*[0,1])[1] for t in t], "r-")

xlabel(L"time $t$")

ylabel(L"solution $x(t)$")

title("motion of a mass on a spring + drag")

grid()
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As you might expect, adding drag causes the mass to slow down more and more.
How is this reflected in the eigenvalues?

In [20]: eigvals(B)

Out[20]: 2-element Array{Complex{Float64},1}:
-0.01+0.0994987im

-0.01-0.0994987im

The eigenvalues are ≈ −0.01± 0.0994987i.
Again, for this 2× 2 matrix problem we could easily calculate the eigenvalues analytically. (In 18.03 you

do this over and over again.) Skipping the simple algebra (just a quadratic equation), they are:

−d
2
± i

√
0.01−

(
d

2

)2

= −α± iω

where I’ve defined α = −Reλ and ω = | Imλ|.

In [21]: sqrt(0.01 - (0.02/2)^2)

Out[21]: 0.099498743710662

What will this do to the solutions?
Well, the basic solution process will be the same. We will still get a solution of the form:

~x(t) = 2 Re
[
c1e

λ1t~x1
]
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where ~x1 is the first eigenvector of B and c1 is an expansion coefficient for the initial condition.
But now we have λ1 = −α+ iω and, similar to before, we get:

x(t) = Re
[
re−αt+iωt+iφ

]
= re−αt cos(ωt+ φ)

So, α = −Reλ is an exponential decay rate and ω = | Imλ| is still a frequency (with a value slightly
changed from the frictionless case). It is nice to plot this e−αt factor on top of our solution:

In [22]: t = linspace(0, 20π*5, 1000)

# find solution by the brute-force e[U+1D2C][U+1D57] [0,1]:

plot(t, [(expm(B*t)*[0,1])[1] for t in t], "r-")

plot(t, 10*exp.(-0.01 * t), "k--")

xlabel(L"time $t$")

ylabel(L"solution $x(t)$")

title("motion of a mass on a spring + drag")

legend(["solution \$x(t)\$", "exponential decay \$e^{-\\alpha t}\$"])

grid()

3.0.1 Key points:

• For complex λ, Re(λ) is an exponential growth rate (> 0) or decay rate (< 0).

• Im(λ) is an angular frequency

• If all λ have Re(λ) < 0, the solution decays to zero.
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• If any λ have Re(λ) > 0, the solution blows up.

• A λ = 0 solution corresponds to a steady state . If only the real part is zero, it is a solution
that oscillates forever without growing or decaying.

3.1 Overdamping:

From the formula above for the eigenvalues of the damped-spring system:

−d
2
± i

√
0.01−

(
d

2

)2

you might notice something: if d gets large enough, then the eigenvalues become purely real and negative.
In particular, if (d/2)2 > 0.01, or equivalently if d > 0.2, then the eigenvalues are

−d
2
±

√(
d

2

)2

− 0.01

which are real and negative. The solutions don’t oscillate at all, they just decay! This is called over-
damping. Let’s check this for d = 0.3:

In [23]: eigvals([ 0 1

-0.01 -0.3 ])

Out[23]: 2-element Array{Float64,1}:
-0.0381966

-0.261803

Yup, two negative eigenvalues, as predicted. It is interesting to plot the solutions for different values of
d to compare them:

In [24]: ds = [0.02, 0.05, 0.1, 0.2, 0.3, 0.4]

t = linspace(0, 20π*5, 1000)

for d in ds

Bd = [ 0 1

-0.01 -d ]

plot(t, [(expm(Bd*t)*[0,1])[1] for t in t], "-")

end

xlabel(L"time $t$")

ylabel(L"solution $x(t)$")

title("mass on a spring for different drags")

legend(["\$d=$d\$" for d in ds])

grid()
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It’s even more fun to use a slider control for d:

In [25]: t = linspace(0, 20π*5, 1000)

fig = figure()

@manipulate for d in 0.0:0.01:0.3

Bd = [ 0 1

-0.01 -d ]

withfig(fig) do

plot(t, [(expm(Bd*t)*[0,1])[1] for t in t], "-")

xlabel(L"time $t$")

ylabel(L"solution $x(t)$")

title("mass on a spring for drag \$d=$d\$")

ylim(-4,8)

grid()

end

end

Interact.Options{:SelectionSlider,Float64}(Signal{Float64}(0.15, nactions=1),"d",0.15,"0.15",Interact.OptionDict(DataStructures.OrderedDict("0.0"=>0.0,"0.01"=>0.01,"0.02"=>0.02,"0.03"=>0.03,"0.04"=>0.04,"0.05"=>0.05,"0.06"=>0.06,"0.07"=>0.07,"0.08"=>0.08,"0.09"=>0.09...),Dict(0.3=>"0.3",0.04=>"0.04",0.26=>"0.26",0.16=>"0.16",0.09=>"0.09",0.08=>"0.08",0.25=>"0.25",0.0=>"0.0",0.28=>"0.28",0.22=>"0.22"...)),Any[],Any[],true,"horizontal")

Out[25]:
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The case of d = 0.2, where the discriminant
√
· · · = 0 and the two eigenvalues are equal, is called critically

damped. This is a bit of an odd case because the matrix becomes defective (non-diagonalizable): there is
only a single eigenvector.

We will analyze such defective cases later in 18.06. They are not our primary concern, though, because
they are kind of a weird limiting case that doesn’t show up most of the time.

4 Two coupled masses on springs

When we are solving things by hand, it is hard to go beyond 2× 2 matrices, but on the computer we have
no such limitations. Practical engineering problems are solved every day involving millions of
coupled differential equations.

Let’s try upgrading to two coupled masses on springs:
Now, our equations look like:

dx1
dt

= v1
dx2
dt

= v2
dv1
dt

= −k1
m
x1 −

k2
m

(x1 − x2)
dv2
dt

= −k3
m
x2 +

k2
m

(x1 − x2)

where the spring k2 connecting the two masses exerts a force ±k2(x1 − x2), with the two masses feeling
an equal and opposite force from that spring.

This can be written in matrix form as d~x/dt = Cx:
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d

dt


x1
x2
v1
v2


︸ ︷︷ ︸

~x=


0 0 1 0
0 0 0 1

−(k1 + k2)/m k2/m 0 0
k2/m −(k3 + k2)/m 0 0


︸ ︷︷ ︸

C

~x

Let’s set $m 1 = m2 = m and k1/m = k2/m = k3/m = 0.01 for simplicity.

In [26]: C = [ 0 0 1 0

0 0 0 1

-0.02 0.01 0 0

0.01 -0.02 0 0 ]

Out[26]: 4×4 Array{Float64,2}:
0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0

-0.02 0.01 0.0 0.0

0.01 -0.02 0.0 0.0

Again, let’s just try plotting the solutions x1(t) and x2(t) computed by “brute force” first, assuming an
initial condition ~x(0) = (0, 0, 1, 0) where we start x1 moving from rest:

In [27]: t = linspace(0, 20π*5, 1000)

# find solution by the brute-force e[U+1D2C][U+1D57] [0,1]:

x = [(expm(C*t)*[0,0,1,0]) for t in t]

plot(t, [x[1] for x in x], "r-")

plot(t, [x[2]+20 for x in x], "b-")

xlabel(L"time $t$")

ylabel(L"solutions $x(t)$")

title("motion of 2 masses on springs")

legend([L"x_1", L"x_2+20"])

grid()
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So, this looks a bit more complicated. But the eigenvalues should clarify the situation for us:

In [28]: eigvals(C)

Out[28]: 4-element Array{Complex{Float64},1}:
-1.38778e-18+0.173205im

-1.38778e-18-0.173205im

-1.59595e-17+0.1im

-1.59595e-17-0.1im

There are four purely imaginary (=oscillating!) eigenvalues, coming in two complex-conjugate pairs.
So, there are only two frequencies in this problem: ω1 = 0.1 and ω2 = 0.1

√
2 ≈ 0.173205.

It is possible to get only one of these solutions at a time if we choose our initial conditions to excite only
one eigenvector (or one complex-conjugate pair).

In particular, for a given eigenvector ~xk, there is a solution ~x(t) = eλkt~xk with initial condition ~x(0) = ~xk.
Or, we could get a real solution from an eigenvector by adding the complex-conjugate solution (which is

also an eigenvector since the matrix is real), corresponding to a solution:

~x(t) = Re
[
ceλkt~xk

]
with an initial condition ~x(0) = Re [c~xk], where c is an arbitrary complex number that determines the

amplitude and phase of the oscillation.
For an oscillating system, these are often called the normal modes of oscillation. Let’s plot these two

“eigensolutions” for our 2-mass problem:
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In [29]: λ, X = eig(C)

t = linspace(0, 20π*5, 1000)

# initial condition from the real part of the first eigenvector:

x = [(expm(C*t)*X[:,3]) for t in t]

plot(t, [real(x[1]) for x in x], "r-")

plot(t, [real(x[2])+2 for x in x], "b-")

xlabel(L"time $t$")

ylabel(L"solutions $x(t)$")

title("first normal mode \$\\omega_1 = 0.1\$")

legend([L"x_1", L"x_2+2"])

grid()

In [30]: # initial condition from the real part of the first eigenvector:

x = [(expm(C*t)*X[:,1]) for t in t]

plot(t, [real(x[1]) for x in x], "r-")

plot(t, [real(x[2])+2 for x in x], "b-")

xlabel(L"time $t$")

ylabel(L"solutions $x(t)$")

title("second normal mode \$\\omega_2 = $(imag(λ[1])) = 0.1\\sqrt{2}\$")

legend([L"x_1", L"x_2+2"])

grid()
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If you look carefully at the plots, you will see a simple pattern:

• The lower-frequency solution is when the masses are moving in the same direction.
• The higher-frequency solution is when the masses are moving in opposite directions.

There are lots of interesting phenomena to think about in coupled mass-spring systems, but let’s leave
most of the physics to 8.03.

5 Hints of things to come: Eigenvalues and matrix structure

From basic physical intuition, these coupled mass/spring systems must have purely imaginary eigenvalues
if there is no damping/drag/friction! In a physics class, we would say that “energy is conserved”: the
oscillations cannot increase (Reλ > 0) or decrease (Reλ < 0) because there is no place else for the energy
to go.

And if there is drag, then the eigenvalues must have negative real parts: the oscillations must be losing
energy, not gaining it.

But these physical laws must arise algebraically somehow! There must be something in the structure
of the matrices (the pattern of their entries) that guarantees it for any positive values of k, m, or d. This
turns out to be an extremely important topic in linear algebra: deriving general facts about the eigenvalues
of matrices from their structure (even though the specific values of the eigenvalues must be found by a
computer).

We’ve already seen this for Markov matrices: the fact that their columns summed to one guaranted a
λ = 1 eigenvalue and other |λ| ≤ 1 (< 1 for positive entries). In the case of masses and springs, the physical
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properties of the normal modes turn out to be closely related to real-symmetric matrices A = AT , which we
will soon see have very special eigen-properties.
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