
Multidimensional-Newton

September 7, 2017

1 Newton’s method and nonlinear equations

In first-year calculus, most students learn Newton’s method for solving nonlinear equations f(x) = 0, which
iteratively improves a sequence of guesses for the solution x by approximating f by a straight line. That
is, it approximates a nonlinear equation by a sequence of approximate linear equations.

This can be extended to systems of nonlinear equations as a multidimensional Newton method, in
which we iterate by solving a sequence of linear (matrix ) systems of equations. This is one example of an
amazing fact: linear algebra is a fundamental tool even for solving nonlinear equations.

1.1 Packages for this notebook

In [1]: # Pkg.add.(["Interact", "PyPlot", "ForwardDiff"]) # uncomment this line to install packages

using Interact, PyPlot

INFO: Recompiling stale cache file /Users/stevenj/.julia/lib/v0.5/PyPlot.ji for module PyPlot.

1.2 One-dimensional Newton

The standard one-dimensional Newton’s method proceeds as follows. Suppose we are solving for a zero (root)
of f(x):

f(x) = 0

for an arbitrary (but differentiable) function f , and we have a guess x. We find an improved guess x+ δ
by Taylor expanding f(x+δ) around x to first order (linear!) in δ, and finding the . (This should be accurate
if x is close enough to a solution, so that the δ is small.) That is, we solve:

f(x+ δ) ≈ f(x) + f ′(x)δ = 0

to obtain δ = −f(x)/f ′(x). Plugging this into x+ δ, we obtain:

new x = x− f(x)/f ′(x) .

This is called a Newton step. Then we simply repeat the process.
Let’s visualize this process for finding a root of f(x) = 2 cos(x) − x + x2/10 (a transcendental equation

that has no closed-form solution).

In [2]: fig = figure()

xs = linspace(-5,5,1000)

@manipulate for step in slider(1:20, value=1), start in slider(-4:0.1:4, value=-0.1)

withfig(fig) do

x = start

local xprev, f, f′

for i = 1:step

xprev = x

1

https://en.wikipedia.org/wiki/Newton's_method
https://en.wikipedia.org/wiki/Taylor_series
https://en.wikipedia.org/wiki/Transcendental_equation


f = 2cos(x) - x + x^2/10

f′ = -2sin(x) - 1 + 2x/10

x = x - f/f′

end

plot(xs, 0*xs, "k-")

plot(xs, 2cos.(xs) - xs + xs.^2/10, "b-")

newf = 2cos(x) - x + x^2/10

plot([xprev, x], [f, 0.0], "ro")

plot(x, newf, "bo")

plot(xs, f + f′ * (xs - xprev), "r--")

plot([x, x], [0, newf], "k--")

xlim(minimum(xs), maximum(xs))

ylim(-5,4)

title("Newton step $step: f($x) = $newf")

end

end

Interact.Slider{Int64}(Signal{Int64}(1, nactions=1),"",1,1:20,"horizontal",true,"d",true)

Interact.Slider{Float64}(Signal{Float64}(-0.1, nactions=1),"",-0.1,-4.0:0.1:4.0,"horizontal",true,".3f",true)

Out[2]:

2



If you start it anywhere near a root of f(x), Newton’s method can converge extremely quickly: asymp-
totically, it doubles the number of accurate digits on each step.

However, if you start it far from a root, the convergence can be hard to predict, and it may not even
converge at all (it can oscillate forever around a local minimum).

Still, in many practical applications, there are ways to get a good initial guess for Newton, and then it
is an extremely effective way to solve nonlinear equations to high accuracy.

1.3 A nonlinear circuit problem

Consider the nonlinear circuit graph from the graphs and networks lecture:
The incidence matrix A of this graph is:

In [3]: A = [ -1 0 0 1 0 0

0 0 0 -1 1 0

0 0 0 0 -1 1

0 0 1 0 0 -1

0 1 -1 0 0 0

1 -1 0 0 0 0

0 -1 0 0 0 1

0 0 0 -1 0 1 ]

Out[3]: 8×6 Array{Int64,2}:
-1 0 0 1 0 0

0 0 0 -1 1 0

0 0 0 0 -1 1

0 0 1 0 0 -1

0 1 -1 0 0 0

1 -1 0 0 0 0

0 -1 0 0 0 1

0 0 0 -1 0 1

1.3.1 Review: (Linear) circuit equations

Recall that if we associate a vector v of voltages with the 6 nodes, then d = Av gives the voltage rise across
each edge, and i = −Y Av gives the current through each edge, where Y is a diagonal matrix of admittances
(= 1/resistance)

Y =


Y1

Y2
. . .

Y8


This is simply an expression of Ohm’s law.
Furthermore, we showed that Kirchhoff’s current law is just the statement AT i = 0. Putting it all

together, and including a current source term s (an external current flowing out of each node), we obtained
the equations:

ATY Av = s

where to have a solution (ATY A is singular) we had to have s ⊥ N(A), or equivalently
∑

i si = 0: the
net current flowing in/out of the circuit must be zero.

3

http://nbviewer.jupyter.org/github/stevengj/1806-spring17/blob/master/lectures/Graphs-Networks.ipynb


1.3.2 Nonlinear Ohm’s law

A key physical foundation of the equations above was Ohm’s law: ij = −dj/Rj = −Yjdj , which is the
statement that the current is proportional to the voltage drop −dj .

However, this is only an approximation. In reality, as the voltage and current increase, the resistance
changes. For example, the resistor heats up (and eventually melts!) due to the dissipated power i2j/Yj = Yjd

2
j ,

and resistance depends on temperature.
Let’s try a simple model of a voltage-dependent resistance. Suppose that we modify Ohm’s law to:

ij = − Yj
1 + αjd2j︸ ︷︷ ︸

Ỹj(dj)

dj

where Ỹj(dj) = Yj/(1 + αjd
2
j ) corresponds to a resistance that increases quadratically with the voltage

rise dj . This model is not unrealistic! For a real resistor, you could measure the voltage dependence of Y ,
and fit it to an equation of this form, and it would be valid for sufficiently small dj ! (The admittance will
normally only depend on d2, not on d, because with most materials it will not depend on the sign of the
voltage drop or current.)

The problem, of course, is that with this nonlinear Ohm’s law, the whole problem becomes a nonlinear
system of equations. How can we solve such a system of equations? At first glance, the methods of 18.06
don’t work — they are only for linear systems.

Newton’s method: Linearizing the equation The trick is the same as Newton’s method. We suppose
that we have a guess v for the voltages, and hence a guess d = Av for the voltage drops. Now, we want to
find an improved guess v+ δ, and we find δ by linearizing the equations in δ: just a multidimensional Taylor
expansion.

That is, we are trying to find a root of:

f(v) = AT Ỹ (Av)Av − s
where Ỹ (Av) is the diagonal matrix of our nonlinear admittances from above. We Taylor expand this to

first order:

f(v + δ) ≈ f(v) + J(v)δ

where J(v) is some n× n matrix (a Jacobian matrix, in fact). Then we solve for our step δ:

δ = −J(v)−1f(v)

and finally we get:

new v = v + δ = v − J(v)−1f(v)

Clearly, J(v) is the analogue of f ′(x) in the one-dimensional Newton method. We will look at the general
formula for J(v) below, but to start with let’s work it out in this particular case. Of course, in practice we
won’t actually invert J : we’ll solve J(v)y = f(v) by J\f (elimination/LU) or some other method.

The Jacobian matrix for nonlinear admittance The admittance is written in terms of the voltage
rise d = Av. If we change v to v + δ, then we get d + Aδ. Let’s denote δ̂ = Aδ. Then the formula for each
component of our current i becomes:

ij = −Ỹj(dj + δ̂j) (dj + δ̂j) ≈ −Ỹj(dj)dj − (Ỹj(dj) + Ỹ ′j (dj)dj)δ̂j

where we have just Taylor-expanded around δ̂j = 0, and Ỹ ′j (dj) = −2αjdjYj/(1 + αjd
2
j )2. Let Kj(dj) =

Ỹj(dj) + Ỹ ′j (dj)dj , and then we have:

ij ≈ −
[
Ỹj(dj)dj +Kj(dj)δ̂j

]
4

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant


Plugging this into f(v + δ), we get

f(v + δ) ≈ ATY (Av)Av − s︸ ︷︷ ︸
f(v)

+ATK(Av)A︸ ︷︷ ︸
J(v)

δ

and hence

J(v) = ATK(Av)A

where

K(d) =


K1(d1)

K2(d2)
. . .

K8(d8)


There is one slight problem here: J is a singular matrix even if all Kj 6= 0, because of N(A) 6= {0}. Just

as with s, J(v)y = f(v) only has a solution if f(v) ∈ C(J) ⊆ C(AT ). Fortunately, f(v) = ATY A − s is
always in C(AT ) as long as s ∈ C(AT ) = N(A)⊥, which was required anyway (from above) if we are to have
a solution in the linear case.

(We can still run into a singular J for “unlucky” Kj , but that is a typical hazard of Newton’s method,
just like we can run into f ′(x) = 0 for unlucky x values. The important thing is that it doesn’t happen
“generically”, i.e. singularities only occur at isolated points.)

Example For an example, let’s just set Yk = 1 and αk = 0.5 for k = 1, . . . , 6, and use s = (1,−1, 0, 0, 0, 0)
as in the previous lecture (current injected into node 2 and extracted out from node 1).

What should we use as our initial guess? How about the solution to the linear problem with Ỹ (0) = Y ?
That’s often a good guess, since in many real problems the nonlinear solution will be very close to the
solution of a simplified linear problem.

However, in this case, let’s use an even simpler first guess: v = 0. Then our first Newton step will be
new v = −J(0)−1f(0) = (ATY A)−1s, since f(0) = −s and K(0) = Y . Of course, by the “matrix inverse ×
vector” here we really mean “solve this system of equations with that right hand side” — this is especially
important here because the inverse doesn’t even exist (the matrix is singular), but a solution exists (the
right-hand-side is in the column space).

Let’s write some code to compute f(v) and J(v):

In [4]: Y[U+2096] = 1

α[U+2096] = 0.5

Y~[U+2096](d) = Y[U+2096] / (1 + α[U+2096] * d^2)

Y~[U+2096] ′(d) = -2α[U+2096]*d*Y[U+2096] / (1 + α[U+2096] * d^2)^2

K[U+2096](d) = Y~[U+2096](d) + Y~[U+2096] ′(d)*d

f(v) = A’ * (diagm(Y~[U+2096].(A*v)) * (A*v)) - [1,-1,0,0,0,0]

J(v) = A’ * diagm(K[U+2096].(A*v)) * A

Out[4]: J (generic function with 1 method)

Now let’s implement the Newton step v − J(v)−1f(v).
I’d ideally like to use v - J(v) \ f(v) in Julia, but the \ function will complain that J is singular, even

though f is in the column space. There are various ways to do this properly numerically, but for simplicity I
will “cheat” and use and advanced tool called the pseudo-inverse, computed in julia by pinv(J), which (for
a right-hand-side in the column space) will give us a particular solution similar to what we would get from
the elimination technique we learned in class. (We will cover the pseudo-inverse much later in 18.06.) There
are other ways to proceed here that are even more efficient, but pinv is the simplest.

5

https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_pseudoinverse


In [5]: newtonstep(v) = v - pinv(J(v)) * f(v)

Out[5]: newtonstep (generic function with 1 method)

Now, let’s see what happens. We’ll start by just plotting the voltages as a function of the Newton step,
to see how (and whether) it is converging:

In [6]: function newton(v, nsteps)

for i = 1:nsteps

v = newtonstep(v)

end

return v

end

newton(v, nsteps::AbstractVector) = map(n -> newton(v,n), nsteps)

Out[6]: newton (generic function with 2 methods)

In [7]: vsteps = newton(zeros(6), 0:10)

plot([vsteps[i][j] for i=1:length(vsteps), j=1:6], "o-")

xlabel("Newton steps")

ylabel("node voltages")

legend([L"v_1", L"v_2", L"v_3", L"v_4", L"v_5", L"v_6"], loc="upper right")

title(L"Newton steps for $\alpha = 0.5$")

6



Out[7]: PyObject <matplotlib.text.Text object at 0x323bc39d0>

Clearly, it is converging pretty rapidly. Another way to see this is to plot the convergence of the length
(norm) of the f(v) vector, ‖f(v)‖ =

√
f(v)T f(v):

In [8]: xlabel("Newton steps")

ylabel(L"\Vert f(v) \Vert")

semilogy(norm.(f.(vsteps)), "bo-")

title(L"Newton convergence for $\alpha = 0.5$")

Out[8]: PyObject <matplotlib.text.Text object at 0x323f6d310>

It converges faster than exponentially with the step. Once it is close to the solution, Newton roughly
doubles the number of digits in each step.

Eventually, it stops getting better: the accuracy is limited by roundoff errors once the error reaches
≈ 10−16, related to the fact that the computer is only doing arithmetic to about 16 digits of accuracy.

1.4 General Multidimensional Newton

The general case of the multidimensional Newton algorithm is as follows. We are solving:
f1(x1, . . . , xn)
f2(x1, . . . , xn)

...
fn(x1, . . . , xn)

 = f(x) = 0

7



for x ∈ Rn and f(x) ∈ Rn: n (possibly nonlinear but differentiable) equations in n unknowns.
Given a guess x, we want to find an improved guess x+ δ for δ ∈ Rn. We do this by Taylor-expanding f

around x to first order (linear):

f(x+ δ) ≈ f(x) + J(x) δ = 0

where J is the n× n Jacobian matrix with entries Jij = ∂fi/∂xj , i.e.

J =


∂f1
∂x1

∂f1
∂x2

· · ·
∂f2
∂x1

∂f2
∂x2

· · ·
...

...
. . .

 .

Hence, we solve the linear equation

J(x) δ = −f(x)

for the Newton step δ, obtaining (if J is invertible):

x+ δ = x− J(x)−1f(x)

Some things to remember:

• Newton converts n nonlinear equations into repeated solution of n× n linear equations.

• When solving nonlinear equations, coming up with a good initial guess is a bit of an art, that often
requires some problem-specific understanding. A typical trick is to solve a related problem, e.g. a
linear problem. Or to start with a linear problem and to “turn on” the nonlinearity gradually, using
the solution of each nonlinear problem as the starting guess for the next one.

• If you start too far from a root, Newton’s method can sometimes take a large step, far outside the
validity of the Taylor approximation, and this can actually make the guess worse. Sophisticated imple-
mentations use a variety of techniques to make the convergence more robust, such as a backtracking
line search or a trust region. These techniques are outside the scope of 18.06, though!

• There are other methods related to Newton that don’t require you to compute J(x) at all. You only
supply f(x) and they either approximate the Jacobian for you directly (e.g. Broyden’s method) or
implicitly (e.g. Anderson acceleration). There is a rich mathematical literature on solution methods
for nonlinear systems of equations, but essentially all the methods have one thing in common: linear
algebra plays a key role.

1.5 Automatic differentiation

The Jacobian matrix can often be automatically computed from f(x) by the computer using automatic
differentiation tools, saving you from the tedious (and error-prone) task of writing out J(x) manually.

In Julia, there are packages ForwardDiff and ReverseDiff to do this for you.
For example, let’s compute the Jacobian of our f(v) function above, and compare it to the J(v) that we

defined manually:

In [9]: using ForwardDiff

In [10]: v = [0.1,1.2,3.4,5.6,-0.3,0.7] # a "random" vector

ForwardDiff.jacobian(f, v)

Out[10]: 6×6 Array{Float64,2}:
0.0990134 -0.153337 0.0 0.0543237 0.0 0.0

-0.153337 0.72329 0.121405 0.0 0.0 -0.691358

0.0 0.121405 -0.243995 0.0 0.0 0.12259

8

https://en.wikipedia.org/wiki/Backtracking_line_search
https://en.wikipedia.org/wiki/Backtracking_line_search
https://en.wikipedia.org/wiki/Trust_region
https://en.wikipedia.org/wiki/Broyden's_method
http://epubs.siam.org/doi/abs/10.1137/10078356X
https://en.wikipedia.org/wiki/Automatic_differentiation
https://en.wikipedia.org/wiki/Automatic_differentiation
https://github.com/JuliaDiff/ForwardDiff.jl
https://github.com/JuliaDiff/ReverseDiff.jl


0.0543237 0.0 0.0 -0.167821 0.0484289 0.0650683

0.0 0.0 0.0 0.0484289 0.173793 -0.222222

0.0 -0.691358 0.12259 0.0650683 -0.222222 0.725922

In [11]: ForwardDiff.jacobian(f, v) - J(v)

Out[11]: 6×6 Array{Float64,2}:
5.55112e-17 -5.55112e-17 0.0 ... 0.0 0.0

-5.55112e-17 0.0 0.0 0.0 0.0

0.0 0.0 -5.55112e-17 0.0 5.55112e-17

0.0 0.0 0.0 -2.77556e-17 2.77556e-17

0.0 0.0 0.0 2.77556e-17 0.0

0.0 0.0 5.55112e-17 ... 0.0 -1.11022e-16

Yup, it computed our Jacobian automatically and perfectly accurately (up to the machine-precision
rounding errors).

How ForwardDiff works, based on dual numbers, is outside the scope of 18.06, but there is a nice tutorial
notebook by David Sanders.

9

https://arxiv.org/abs/1607.07892
https://en.wikipedia.org/wiki/Dual_number
http://nbviewer.jupyter.org/github/stevengj/18S096-iap17/blob/master/lecture8/Automatic%20differentiation%20and%20applications.ipynb
http://nbviewer.jupyter.org/github/stevengj/18S096-iap17/blob/master/lecture8/Automatic%20differentiation%20and%20applications.ipynb
http://sistemas.fciencias.unam.mx/~dsanders/

