
Gaussian-elimination

September 7, 2017

1 Gaussian elimination

This Julia notebook allows us to interactively visualize the process of Gaussian elimination.
Recall that the process of Gaussian elimination involves subtracting rows to turn a matrix A into an

upper triangular matrix U . Often we augment the matrix with an additional column, representing the right-
hand side b of a system of equations Ax = b that we want to solve: by doing the same row operations to
both A and b, we arrive at an equivalent equation Ux = c that is easy to solve by backsubstitution (solving
for one variable at a time, working from the last row to the top row).

For example, suppose we are solving:

Ax =

1 3 1
1 1 −1
3 11 6

x =

 9
1
35

 = b

We would perform the following elimination process. 1 3 1 9
1 1 −1 1
3 11 6 35

→
 1 3 1 9

0 −2 −2 −8
0 2 3 8

→
 1 3 1 9

0 −2 −2 −8
0 0 1 0


It is much more fun to let the computer do the arithmetic than to crunch through it ourselves on the

blackboard, but usually the computer does things too quickly (and it often does some re-ordering of the rows
that makes it harder to follow what is going on). For example, in Julia, we can solve the above system of
equations by simply:

In [1]: A = [1 3 1

1 1 -1

3 11 6]

Out[1]: 3×3 Array{Int64,2}:
1 3 1

1 1 -1

3 11 6

In [2]: b = [9, 1, 35]

Out[2]: 3-element Array{Int64,1}:
9

1

35

In [3]: x = A \ b # solves Ax = b by (essentially) Gaussian elimination

Out[3]: 3-element Array{Float64,1}:
-3.0

4.0

0.0

1

https://en.wikipedia.org/wiki/Gaussian_elimination
https://en.wikipedia.org/wiki/Triangular_matrix

Of course, the computer can solve much bigger problems easily. It can solve 1000 equations in 1000
unknowns in a fraction of a second — nowadays, that is no longer considered a “big” system of equations.

In [4]: Ahuge = rand(1000,1000)

Out[4]: 1000×1000 Array{Float64,2}:
0.999439 0.218541 0.926735 ... 0.18134 0.440472 0.370998

0.254565 0.407119 0.892029 0.245744 0.428122 0.417186

0.442499 0.344993 0.105348 0.788985 0.990621 0.816038

0.484535 0.87536 0.4178 0.1804 0.986928 0.424028

0.0200728 0.212215 0.666981 0.546373 0.294638 0.250384

0.354426 0.0122195 0.693046 ... 0.048007 0.339813 0.90019

0.173619 0.281971 0.850616 0.808064 0.237943 0.0276862

0.682416 0.556563 0.166403 0.754182 0.285963 0.0600911

0.385231 0.745615 0.070297 0.570591 0.757603 0.250422

0.109478 0.13033 0.21048 0.420667 0.949553 0.190161

0.416554 0.429042 0.127873 ... 0.742661 0.542352 0.473639

0.95743 0.18821 0.831533 0.22597 0.640721 0.482018

0.511667 0.171514 0.61173 0.761556 0.932857 0.290719
...

...

0.903682 0.458837 0.904612 0.526082 0.969423 0.98074

0.799626 0.810578 0.397511 0.689131 0.380224 0.787858

0.923511 0.034355 0.999014 ... 0.97647 0.516341 0.24342

0.0292043 0.508768 0.722043 0.648136 0.572726 0.522543

0.794563 0.111256 0.594695 0.862215 0.821355 0.452182

0.179553 0.342921 0.128901 0.883977 0.405025 0.328367

0.486401 0.255297 0.53484 0.251865 0.288409 0.825427

0.649021 0.454363 0.47842 ... 0.30454 0.545873 0.387851

0.728921 0.586378 0.938405 0.828617 0.413401 0.447249

0.165084 0.393614 0.00965933 0.413297 0.108621 0.288142

0.615864 0.103994 0.66932 0.0722988 0.617049 0.322095

0.778809 0.488329 0.0868491 0.933352 0.892181 0.952343

In [5]: bhuge = rand(1000)

Out[5]: 1000-element Array{Float64,1}:
0.102929

0.0309441

0.344267

0.586685

0.225116

0.211111

0.865491

0.37005

0.266376

0.165927

0.911616

0.34382

0.256057
...

0.822513

0.425997

0.914556

0.236236

2

0.797237

0.3844

0.0226938

0.669134

0.419199

0.439416

0.73799

0.228102

In [6]: Ahuge \ bhuge

Out[6]: 1000-element Array{Float64,1}:
0.059388

0.170628

1.87947

0.984206

-0.466225

-0.293058

0.312031

-0.290076

-0.214995

0.628901

-0.389962

-1.33457

-0.874197
...

-0.496138

-0.591704

-0.296718

0.0107591

-1.31569

2.23445

-0.221941

-0.322383

-1.60712

-0.104835

-0.496091

-0.0145873

In [7]: @time Ahuge \ bhuge;

0.050512 seconds (140 allocations: 7.653 MB)

If we want to see the matrix U from above, we use the fact (covered soon in 18.06) that Gaussian
elimination is really “LU” factorization, performed by the built-in function lu. By default, however, “serious”
computer implementations of this process automatically re-order the rows to reduce the effect of roundoff
errors, so we need to pass an extra option that tells Julia not to do this. (You should not normally do this,
except for learning exercises.)

In [8]: # LU factorization (Gaussian elimination) of the augumented matrix [A b],

passing the undocumented option Val{false} to prevent row re-ordering

L, U = lu([A b], Val{false})

U # just show U

Out[8]: 3×4 Array{Float64,2}:
1.0 3.0 1.0 9.0

3

0.0 -2.0 -2.0 -8.0

0.0 0.0 1.0 0.0

However, it would be nice to show the individual steps of this process. This requires some programming.

2 Code to interactively visualize Gaussian elimination

The following is some slightly tricky code that lets us visualize the process of Gaussian elimination in Julia.
It takes advantage of the Interact package in Julia, which allows us to easily create interactive displays using
sliders, pushbuttons, and other widgets.

Implementing this is not really a beginner exercise for new Julia programmers, though it is fairly
straightforward for people who are used to Julia. It involves defining our own type to control display, our
own implementation of Gaussian elimination that allows us to stop partway through, and using the Interact
package to create interactive widgets.

You can skip this part if you aren’t ready for the programming details.

In [9]: """

TwoMatrices is just a wrapper type around two matrices or vectors with the same

number of rows, so that they can be displayed side-by-side with a title and

and arrow pointing from left to right.

"""

type TwoMatrices

left::AbstractVecOrMat

right::AbstractVecOrMat

title::AbstractString

function TwoMatrices(left, right, title="")

size(left,1) == size(right,1) || throw(DimensionMismatch("two matrices must have same # rows"))

return new(left, right, title)

end

end

function Base.show(io::IO, ::MIME"text/plain", x::TwoMatrices)

isempty(x.title) || println(io, x.title)

m = size(x.left, 1)

s = [Text(" "^10) for i in 1:m]

s[(m+1)÷2] = Text(" ---> ")

Base.showarray(io, [x.left s x.right], false; header=false)

end

"""

naive_gauss(A, [step])

Given a matrix ‘A‘, performs Gaussian elimination to convert

‘A‘ into an upper-triangular matrix ‘U‘.

This implementation is "naive" because it *never re-orders the rows*.

(It will obviously fail if a zero pivot is encountered.)

If the optional ‘step‘ argument is supplied, only performs ‘step‘

steps of Gaussian elimination.

Returns ‘(U, row, col, factor)‘, where ‘row‘ and ‘col‘ are the

row and column of the last step performed, while ‘factor‘

is the last factor multiplying the pivot row.

"""

4

https://github.com/JuliaGizmos/Interact.jl

function naive_gauss(A, step=typemax(Int))

m = size(A,1) # number of rows

factor = A[1,1]/A[1,1]

step ≤ 0 && return (A, 1, 1, factor)

U = copy!(similar(A, typeof(factor)), A)

for j = 1:m # loop over m columns

for i = j+1:m # loop over rows below the pivot row j

subtract a multiple of the pivot row (j)

from the current row (i) to cancel U[i,j] = U[U+1D62][U+2C7C]:

factor = -U[i,j]/U[j,j]

U[i,:] = U[i,:] + U[j,:] * factor

step -= 1

step ≤ 0 && return (U, i, j, factor)

end

end

return U, m, m, factor

end

Out[9]: naive gauss

In [10]: using Interact

For display, I only want to show 3 decimal places of floating-point values,

but I want to show integers and similar types exactly, so I define a little

function to do this rounding

shorten(x::AbstractFloat) = round(x, 3)

shorten(x) = x # leave non floating-point values as-is

create an interactive widget to visualize the Gaussian-elimination process for the matrix A.

function visualize_gauss(A)

m = size(A, 1)

@manipulate for step in slider(1:(m*(m-1))÷2, value=1, label="gauss step")

Uprev, = naive_gauss(A, step-1)

U, row, col, factor = naive_gauss(A, step)

pivot = U[col,col]

TwoMatrices(shorten.(Uprev), shorten.(U), "Gaussian elimination for column $col with pivot $pivot: add $(shorten(factor)) * (row $col) to (row $row)")

end

end

Out[10]: visualize gauss (generic function with 1 method)

3 Gaussian elimination examples

Now, let’s use this machinery to interact with some examples, starting with our 3× 3 matrix from above:

In [11]: visualize_gauss([A b])

Interact.Slider{Int64}(Signal{Int64}(1, nactions=1),"gauss step",1,1:3,"horizontal",true,"d",true)

Out[11]: Gaussian elimination for column 1 with pivot 1.0: add -1.0 * (row 1) to (row 2)

1 3 1 9 1.0 3.0 1.0 9.0

1 1 -1 1 ---> 0.0 -2.0 -2.0 -8.0

3 11 6 35 3.0 11.0 6.0 35.0

In [12]: visualize_gauss(rand(-9:9,5,5))

5

Interact.Slider{Int64}(Signal{Int64}(1, nactions=1),"gauss step",1,1:10,"horizontal",true,"d",true)

Out[12]: Gaussian elimination for column 1 with pivot -2.0: add 1.5 * (row 1) to (row 2)

-2 3 1 -6 0 -2.0 3.0 1.0 -6.0 0.0

3 -8 2 2 3 0.0 -3.5 3.5 -7.0 3.0

3 8 -2 1 7 ---> 3.0 8.0 -2.0 1.0 7.0

-1 -3 -1 -6 -1 -1.0 -3.0 -1.0 -6.0 -1.0

6 9 1 7 1 6.0 9.0 1.0 7.0 1.0

Of course, because we are not re-ordering the rows, this process can go horribly wrong, most obviously
if a zero pivot is encountered:

In [13]: Abad = [-3 5 5 3 -7

3 -5 8 -8 -6

8 2 8 2 -8

-6 -2 6 4 -8

-8 4 -6 -1 8]

visualize_gauss(Abad)

Interact.Slider{Int64}(Signal{Int64}(1, nactions=1),"gauss step",1,1:10,"horizontal",true,"d",true)

Out[13]: Gaussian elimination for column 1 with pivot -3.0: add 1.0 * (row 1) to (row 2)

-3 5 5 3 -7 -3.0 5.0 5.0 3.0 -7.0

3 -5 8 -8 -6 0.0 0.0 13.0 -5.0 -13.0

8 2 8 2 -8 ---> 8.0 2.0 8.0 2.0 -8.0

-6 -2 6 4 -8 -6.0 -2.0 6.0 4.0 -8.0

-8 4 -6 -1 8 -8.0 4.0 -6.0 -1.0 8.0

But this matrix is not actually singular:

In [14]: det(Abad)

Out[14]: 19211.999999999996

So we can fix the problem just by re-ordering the rows, e.g. swapping the first and last rows:

In [15]: Aok = [-8 4 -6 -1 8

3 -5 8 -8 -6

8 2 8 2 -8

-6 -2 6 4 -8

-3 5 5 3 -7]

visualize_gauss(Aok)

Interact.Slider{Int64}(Signal{Int64}(1, nactions=1),"gauss step",1,1:10,"horizontal",true,"d",true)

Out[15]: Gaussian elimination for column 1 with pivot -8.0: add 0.375 * (row 1) to (row 2)

-8 4 -6 -1 8 -8.0 4.0 -6.0 -1.0 8.0

3 -5 8 -8 -6 0.0 -3.5 5.75 -8.375 -3.0

8 2 8 2 -8 ---> 8.0 2.0 8.0 2.0 -8.0

-6 -2 6 4 -8 -6.0 -2.0 6.0 4.0 -8.0

-3 5 5 3 -7 -3.0 5.0 5.0 3.0 -7.0

6

3.1 A bigger example

We quickly run out of space for displaying matrices as text, but we can visualize the process for larger
matrices by using images, with the PyPlot package (a wrapper around the Python Matplotlib library):

In [16]: using PyPlot

In [18]: m = 100

Abig = randn(m,m)

fig = figure()

nsteps = (m*(m-1))÷2
@manipulate for step in slider(0:50:nsteps, value=2, label="gauss step")

withfig(fig) do

U, row, col = naive_gauss(Abig, step)

I had to experiment a little to find a nice way to plot this

imshow(log10.(abs.(U) .+ 1), cmap="hot", vmin=0, vmax=3)

title("step $step: column $col, row $row")

colorbar(label=L"\log_{10}(|U_{i,j}| + 1)")

end

end

Interact.Slider{Int64}(Signal{Int64}(2, nactions=1),"gauss step",2,0:50:4950,"horizontal",true,"d",true)

Out[18]:

7

Note that it takes a lot more steps of Gaussian elimination for a 100× 100 matrix (4950 steps) than for
a 5× 5 matrix (10 steps). Later on in 18.06, we will analyze the computational cost of Gaussian elimination
and how it scales with the size of the matrix (in computer science, this is known as the complexity of the
algorithm).

8

https://en.wikipedia.org/wiki/Computational_complexity_theory

