
Fibonacci

September 7, 2017

1 Fibonacci recurrence

The Fibonacci numbers are:

1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Each number fn in the sequence is the sum of the previous two, defining the recurrence relation:

fn = fn−1 + fn−2

Perhaps the most obvious way to implement this in a programming language is via recursion:

In [1]: function slowfib(n)

if n < 2

return BigInt(1) # use bigint type to support huge integers

else

return slowfib(n-1) + slowfib(n-2)

end

end

Out[1]: slowfib (generic function with 1 method)

Note that there is a slight catch: we have to make sure to do our computations with the BigInt integer
type, which implements arbitrary precision arithmetic. The Fibonacci numbers quickly get so big that they
overflow the maximum representable integer using the default (fast, fixed numbrer of binary digits) hardware
integer type.

In [2]: [slowfib(n) for n = 1:10]

Out[2]: 10-element Array{BigInt,1}:
1

2

3

5

8

13

21

34

55

89

Not that it matters for toy calculations like this, but there are much faster ways to compute Fibonacci
numbers than the recursive function defined above. The GMP library used internally by Julia for BigInt

arithmetic actually provides an optimized Fibonacci-calculating function mpz fib ui that we can call if we
want to using the low-level ccall technique:

1

https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Recurrence_relation
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Arbitrary-precision_arithmetic
https://en.wikipedia.org/wiki/Integer_overflow
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/GNU_Multiple_Precision_Arithmetic_Library
https://gmplib.org/manual/Number-Theoretic-Functions.html
https://docs.julialang.org/en/latest/manual/calling-c-and-fortran-code.html

In [3]: function fastfib(n)

z = BigInt()

ccall((:__gmpz_fib_ui, :libgmp), Void, (Ptr{BigInt}, Culong), &z, n)

return z

end

Out[3]: fastfib (generic function with 1 method)

In [4]: [fastfib(i) for i = 1:100]

Out[4]: 100-element Array{BigInt,1}:
1

1

2

3

5

8

13

21

34

55

89

144

233
...

1779979416004714189

2880067194370816120

4660046610375530309

7540113804746346429

12200160415121876738

19740274219868223167

31940434634990099905

51680708854858323072

83621143489848422977

135301852344706746049

218922995834555169026

354224848179261915075

It’s about 1000x faster even for the 20th Fibonacci number. It turns out that the recursive algorithm is
pretty terrible — the time increases exponentially with n.

In [5]: @time fastfib(20)

@time slowfib(20)

0.002777 seconds (164 allocations: 9.711 KB)

0.010294 seconds (54.73 k allocations: 1.253 MB, 70.13% gc time)

Out[5]: 10946

2 Fibonacci as matrices

We can represent the Fibonacci recurrence as repeated multiplication by a 2× 2 matrix, since:(
fn+1

fn

)
=

(
1 1
1 0

)
︸ ︷︷ ︸

F

(
fn
fn−1

)

2

https://www.youtube.com/watch?v=pqivnzmSbq4

In [6]: F = [1 1

1 0]

Out[6]: 2×2 Array{Int64,2}:
1 1

1 0

So, plugging in f1 = 1, f2 = 1, then (
fn+2

fn+1

)
= Fn

(
1
1

)
and the key to understanding Fn is the eigenvalues of F :

In [7]: eigvals(F)

Out[7]: 2-element Array{Float64,1}:
-0.618034

1.61803

Analytically, we can easily solve this 2×2 eigenproblem to show that the eigenvalues are (1±
√

5)/2 (just
the roots of the quadratic characteristic polynomial det(F − λI) = λ2 − λ− 1):

In [8]: (1 +
√
5)/2

Out[8]: 1.618033988749895

In [9]: (1 -
√
5)/2

Out[9]: -0.6180339887498949

For example, to compute f100, we can multiply F 98 by (1, 1) (again converting to BigInt using big first
to avoid overflow):

In [10]: big(F)^98 * [1, 1]

Out[10]: 2-element Array{BigInt,1}:
354224848179261915075

218922995834555169026

This matches our fastfib function from above:

In [11]: fastfib(100)

Out[11]: 354224848179261915075

The key thing about Fn is that, for large n, the behavior is dominated by the biggest |λ|. That is, for
large n, we must have (fn, fn−1) approximately parallel to the corresponding eigenvector, and hence:(

fn+1

fn

)
= F

(
fn
fn−1

)
≈ λ1

(
fn
fn−1

)
where λ1 = (1 +

√
5)/2 is the so-called golden ratio.

Let’s compute the ratios of fn+1/fn and show that they approach the golden ratio:

In [12]: (1 +
√
big(5))/2 # golden ratio computed to many digits

Out[12]: 1.61803398874989484820458683436563811772030917980576286213544862270526046281891

3

https://en.wikipedia.org/wiki/Golden_ratio

In [13]: using Interact

@manipulate for n = 1:1000

fastfib(n+1)/fastfib(n)

end

Interact.Options{:SelectionSlider,Int64}(Signal{Int64}(500, nactions=1),"n",500,"500",Interact.OptionDict(DataStructures.OrderedDict("1"=>1,"2"=>2,"3"=>3,"4"=>4,"5"=>5,"6"=>6,"7"=>7,"8"=>8,"9"=>9,"10"=>10...),Dict(306=>"306",29=>"29",74=>"74",905=>"905",176=>"176",892=>"892",285=>"285",318=>"318",873=>"873",975=>"975"...)),Any[],Any[],true,"horizontal")

Out[13]: 1.61803398874989484820458683436563811772030917980576286213544862270526046281891

We can also plot the ratio vs. n:

In [14]: using PyPlot

plot(1:10, [fastfib(n+1)/fastfib(n) for n=1:10], "ro-")

plot([0,10], (1+
√
5)/2 * [1,1], "k--")

xlabel(L"n")

ylabel(L"f_{n+1}/f_n")

Out[14]: PyObject <matplotlib.text.Text object at 0x332cb6510>

Clearly, it converges rapidly as expected!
(In fact, it converges exponentially rapidly, with the error going exponentially to zero with n. We will

discuss this in more detail later when discussing the power method.)

4

