Eigenvalue-Polynomials

September 7, 2017

In [1]: using Polynomials, PyPlot, Interact

1 Eigenvalues: The Key Idea

If we can find a solution z # 0 to

Ax = \x

then, for this vector, the matrix A acts like a scalar. x is called an eigenvector of A, and A is called
an eigenvalue.

In fact, for an m x m matrix A, we typically find m linearly independendent eigenvectors z1, o, ..., Tm
and m corresponding eigenvalues A1, Az, ..., A;,. Such a matrix is called diagonalizable. Most matrices
are diagonalizable; we will deal with the rare “defective” (non-diagonalizable) case later.

Given such a basis of eigenvectors, the key idea for using them is:

1. Take any vector z and expand it in this basis: £ = cix1 + -+ ¢, or £ = Xcor ¢ = X 'z where X
is the matrix whose columns are the eigenvectors.

2. For each eigenvector xj, the matrix A acts like a scalar A\;. Multiplication or division corresponds to
multiplying/dividing x; by Ax. Solve your problem for each eigenvector by treating A as the
scalar A.

3. Add up the solution to your problem (sum the basis of the eigenvectors). That is, multiply the new
coefficients by X.

This process of expanding in the eigenvectors, multiplying (or whatever) by A, and then summing up the
eigenvectors times their new coefficients, is expressed algebraically as the following diagonalization of the
matrix A:

A=XAX"!

where A is the diagonal matrix of the eigenvalues and X = (:171 To - xm) from above.

2 The characteristic polynomial

To find the eigenvalues, one approach is to realize that Ax = Ax means:

(A— Az =0,

so the matrix A — A\I is singular for any eigenvalue \. This corresponds to the determinant being
Z€ro:

p(\) = det(A — AI) =0

where p()) is the characteristic polynomial of A: a polynomial of degree m if A is m x m. The
roots of this polynomial are the eigenvalues).

A polynomial of degree m has at most m roots (possibly complex), and typically has m distinct roots.
This is why most matrices have m distinct eigenvalues/eigenvectors, and are diagonalizable.

2.1 Eigenvalue example:

For example, consider the matric

whose eigenvalues are A = {2,3}:

In [2]: A= [11
-2 4]
Out[2]: 2x2 Array{Int64,2}:

1 1
-2 4

In [3]: eigvals(A)

Out[3]: 2-element Array{Float64,1}:
2.0
3.0

The characteristic polynomial is

1—-A 1

det(A—)\I):det(9 41

):(1—)\)(4—)\)—(1)(—2):>\2—5>\+6:(/\—2)(/\—3)

where we have used high-school algebra to factor the polynomial. Hence its roots are A\ = {2,3}, as
computed above.

2.2 Eigenvectors

Once we have the eigenvalues, finding the eigenvectors is (in principle) easy: the eigenvectors are just (a
basis for) the nullspace

N(A—AI)

when A is an eigenvalue.
For example, with the matrix above, let’s take the eigenvalue Ay = 2:

-1 1
e ()

We could go through Gaussian elimination to find the nullspace, but we can see by inspection that the
second column is minus the first, hence x; = (1, 1) is a basis for the nullspace:

(A—20)a, = (:3 é) @ - <8)

A.’El = 21’1

or

as desired. 1 = (1,1) is an eigenvector! Let’s check:

In [4]: A = [1, 1]

Out[4]: 2-element Array{Int64,1}:
2
2

For the other eigenvalue, A = 3, we get:

-2 1
o (20

from which it is obvious that a basis for the nullspace is zs = (1,2). Let’s check:
In [5]: A = [1, 2]

Out [5]: 2-element Array{Int64,1}:
3
6

Yup, Aze = 3xo!

For more complicated cases, of course, we might have to go through elimination to find the nullspace. In
practice, though, we alway just let the computer do it. The eig function in Julia will return the eigenvalues
and eigenvectors:

In [6]: N, X = eig(A)

Out[6]: ([2.0,3.0],
[-0.707107 -0.447214; -0.707107 -0.894427])

In [7]:]N

Out[7]: 2-element Array{Float64,1}:
2.0
3.0

In [8]: X

Out[8]: 2x2 Array{Float64,2}:
-0.707107 -0.447214
-0.707107 -0.894427

The columns of X are indeed the eigenvectors from above, but they are scaled differently (they are
normalized to unit length). If we divide each one by its first element, though, we should recover our scaling
from above:

In [9]: X[:,11 / X[1,1]1 # first column, with first entry scaled to 1

Out[9]: 2-element Array{Float64,1}:
1.0
1.0

In [10]: X[:,2] / X[1,2] # second column, with second entry scaled to 1

Out[10]: 2-element Array{Float64,1}:
1.0
2.0

In practice, computing eigenvalues by hand, especially by this method, is even more pointless than doing
Gaussian elimination by hand, for reasons explained below, so I will focus more on the properties of
eigenvalues and how to use them than how to compute them. The computer will give us their
values.

2.3 Complex eigenvalues

If we change the matrix to:

we get a characteristic polynomial:

det (1__2)\ 4 E)\) =1-MN4-)N-3)(-2) = A2 —5)+10

whose roots, from the quadratic formula, are:

_ 5£+/52 40

A
2

5+ +v—-15
2

which are complex! Let’s check:

In [11]: eigvals([1 3
-2 41)

Out[11]: 2-element Array{Complex{Float64},1}:
2.5+1.93649im
2.5-1.93649im

In [12]: (5 + sqrt(15)*im) / 2
Out[12]: 2.5 + 1.9364916731037085im

Yup, it matches our formula.

Eigenvalues may be complex numbers, even for real matrices. We can’t avoid complex numbers
for any longer in 18.06!

(But, for real matrices, they are the roots of a real polynomial and hence come in complex conjugate
pairs.)

3 The perils of polynomial roots

You might think that finding roots of polynomials is we must inevitably find eigenvalues. In fact, although
we use the characteristic polynomial to think about eigenvalues, in practice they are not used to compute
them except for tiny matrices.

In fact, working with the characteristic polynomial is a computational disaster in general, because roots
of polynomials are exponentially sensitive to their coefficients. Any tiny roundoff error leads to
disaster.

For example, consider the polynomial

w(z)=(x—1)(z—-2)(x—3) - (z—10)

whose roots are, obviously, 1,2,...,10. What happens if we actually multiply this polynomial together and
compute the roots from the coefficients?

In [13]: w = prod([Poly([-n, 1.0]) for n = 1:10])
Out[13]: Poly(3.6288e6 - 1.062864e7*x + 1.2753576e7*x"2 - 8.4095e6%x"3 + 3.41693e6%x"4 - 902055.0%x"5 +

Already, this seems hard: how do we find roots of a high-degree polynomial? More on this below.
For the moment, we will just use a “black box” function roots provided by the Polynomials package to
“magically” get the roots of w from its coefficients:

https://en.wikipedia.org/wiki/Complex_conjugate_root_theorem
https://en.wikipedia.org/wiki/Complex_conjugate
https://en.wikipedia.org/wiki/Complex_conjugate

In [14]: roots(w)

Out[14]: 10-element Array{Float64,1}:
10.0

=N WP oo N 00O
O O O O O OO oo

Looks good! The roots are what they should be.

Howevever, suppose we make a tiny error in computing the coefficients. Let’s multiply each coefficient
by 1+ €, where € is a random small number of root-mean-square value R.

The following code plots the roots in the complex plane for 100 random perturbations, and lets us vary
the magnitude R of the pertubation:

In [15]: N = 10
w = prod([Poly([-n, 1.0]) for n = 1:N])
fig = figure(Q
@manipulate for logR in -12:0.1:-1
withfig(fig) do
plot(1:N, zeros(10), "r*")
R = expl10(logR)
for i = 1:100
r = roots(Poly(coeffs(w) .* (1 .+ R .* randn(N+1))))
plot(real(r), imag(r), "b.")
end
xlabel("real part of roots")
ylabel("imaginary part of roots")
title("roots of \$(x-1)\\cdots(x-10)\$ with coeffs perturbed by R=$R")
end
end

Interact.Options{:SelectionSlider,Float64}(Signal{Float64}(-6.5, nactions=1),"logR",-6.5,"-6.5",Interac

Out [15]:

https://en.wikipedia.org/wiki/Complex_plane

roots of (x — 1)---(x — 10) with coeffs perturbed by R=3.162277660168379e-7

: i .
1.0 1 . -
} f .
3 - "'I.- ‘
2 o5 % g g. \ 0
e ¢] % v v ;
LE [] £ ‘. .. .:‘ :
£ H
2 o004 * - e i’ emds ®n whe oo cgmer .--l-.
& & - 1
g] g '. .. .:‘ ..
=) . i 4 o & l
g —0.5 1 . {- L]
= f k t .
: +
“104 kI S
A B
2 4 6 8 10

real part of roots

Even a tiny error causes the roots to be complete garbage. This gets exponentially worse as the
degree of the polynomials increases.

Because computers inevitably use a finite precision (usually about 15 significant digits), the tiny roundoff
errors mean that characteristic polynomials are a computational disaster if they are actually computed
explicitly.

4 Companion matrices

Finding roots of polynomials is equivalent to finding eigenvalues. Not only can you find eigenvalues
by solving for the roots of the characteristic polynomial, but you can conversely find roots of any polynomial
by turning into a matrix and finding the eigenvalues.

Given the degree-n polynomial:

p(Z) =co+ciz+ -+ cnilzn—l s

(notice that the z™ coefficient is 1), we define the n X n companion matrix

0 1 0 . 0
0 0 1 . 0
C=1| 0
0 1
—Cp —C1 ... —Cp—2 —Cpn_—1

The amazing fact is that the characteristic polynomial det(C' — A\I) = p()), and so the eigenvalues of
C are the roots of p.

4.1 Proof

Suppose z is an root of p(z) = 0. We can now show that this is an eigenvalue of C, with eigenvector

_ 2 n—1y.
=(1,z,2%,...,2")

1 z z 1

22 22 z

C 22 = : = : =z 22

. anl anl
P —Ccg—C1Z— = Cpg 2L 2" Pt
where in the last row we used the fact that p(z) =0s0 2" = —cg — 12 — - — cp_12™ L.

Hence z is an eigenvalue. The eigenvalues of C are the roots of p and vice versa.

4.2 Conclusion

If you have a polynomial whose leading coefficient is not 1, you can just divide the polynomial by that
coefficient to get it in this form, without changing its roots. Hence the roots of any polynomial can be
found by computing the eigenvalues of a companion matrix.

In [16]: function companion(p::Poly)

c = coeffs(p)
n = degree(p)
¢ = c[1:n] / clend]
C=1[1[zeros(n-1)’; eye(n-1,n-1)] -c 1’
return C
end
Out[16]: companion (generic function with 1 method)
In [17]: p = Poly([-2, 11) * Poly([-3, 11) # (z - 2) * (z - 3)
Out[17]: Poly(6 - 5*x + x72)
In [18]: C = companion(p)
Out[18]: 2x2 Array{Float64,2}:
0.0 1.0
-6.0 5.0
In [19]: eigvals(C)
Out[19]: 2-element Array{Float64,1}:
2.0
3.0
In [20]: # (z - 2) * (z - 3) * (z - 4) * (z + 1)
p = Poly([-2, 11) * Poly([-3, 11) * Poly([-4, 11) * Poly([1, 11)
Out [20]: Poly(-24 + 2%x + 17%x"2 - 8%x"3 + x74)
In [21]: C = companion(p)
Out[21]: 4x4 Array{Float64,2}:

0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0
24.0 -2.0 -17.0 8.0

In [22]: eigvals(C)

Out[22]: 4-element Array{Float64,1}:
-1.0

N W
O O O

In fact, this is the most common method to find roots of polynomials of degree > 5: you find
the companion matrix, and compute its eigenvalues. This is precisely how the Polynomials package does it
(albeit with some extra cleverness to check for leading and trailing zero coefficients):

In [23]: @which roots(p)
Out[23]: roots{T}(p::Polynomials.Poly{T}) at /Users/stevenj/.julia/v0.5/Polynomials/src/Polynomials.jl:¢

This would seem rather circular if eigenvalues were computed, in turn, by finding roots of polynomi-
als. But they aren’t: practical computer eigenvalue solvers never compute the characteristic
polynomial, and don’t resemble generic root-finding algorithms (like Newton’s method).

5 Computing eigenvalues = polynomial roots = hard

Everyone learns the quadratic formula to find roots of a quadratic (degree-2) polynomial.

There is a (horrible) cubic formula to find the roots of any cubic (degree-3) polynomial.

There is a (terrifying) quartic formula to find the roots of any quartic (degree-4) polynomial.

e There is no formula (in terms of a finite number of +,x,+,",/) for the roots of an arbitrary quintic
polynomial or any degree > 5. This is the Abel-Ruffini theorem, proved in the 19th century.

This does not mean that you can’t compute roots (or eigenvalues) in practice! But it means that root-
finding/eigenvalue algorithms are necessarily iterative: they converge toward the solution but
never reach it exactly. You can get the solution to any desired accuracy.

For example we’ve already seen one such algorithm! Newton’s method is an algorithm that could be
used to find the roots of an arbitrary polynomial (given enough starting guesses), and converges very quickly
without ever exactly reaching the root.

The most common algorithm to find eigenvalues (and hence polynomial roots, via companion matrices)
is the QR algorithm. As you might guess, it is related to the A = QR factorization. Explaining how and
why this algorithm works, however, is outside the scope of 18.06. (It takes me a week+ in 18.335: graduate
numerical methods.)

This means that the textbook characteristic-polynomial method we use to find eigenvalues of 2 x 2
matrices is something of a fraud: unlike Gaussian elimination, it bears no resemblance whatsoever to how
eigenvalues are really computed. In 18.06, therefore, we will mostly assume that the computer hands us the
eigenvalues and eigenvectors, and we will focus on what eigensolutions mean, how they are used,
and what their properties are.

One thing that it is useful to know, however, is that the computer algorithm to compute eigenval-
ues/eigenvectors of an m x m matrix requires ~ m? operations, just like Gaussian elimination. However, the
“constant” coefficient in front of m? is significantly worse:

In [27]: A1000 = rand(1000,1000)
@time lufact(A1000)
Otime eigvals(A1000);
@time eig(A1000);

0.125705 seconds (11 allocations: 7.637 MB, 82.49% gc time)
1.537934 seconds (40 allocations: 7.941 MB)
2.909295 seconds (88 allocations: 30.831 MB, 0.147, gc time)

https://en.wikipedia.org/wiki/Quadratic_formula
https://en.wikipedia.org/wiki/Cubic_function
https://en.wikipedia.org/wiki/Quartic_function
https://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem
https://en.wikipedia.org/wiki/Newton%27s_method
https://en.wikipedia.org/wiki/QR_algorithm

In [29]: @elapsed(eig(A1000)) / Qelapsed(lufact(A1000))
Out [29]: 152.82364279464474

Finding eigenvalues and/or eigenvectors is not so cheap!

