
Dense-and-Sparse

September 7, 2017

In [1]: using PyPlot, Interact

1 Large-scale linear algebra: Dense matrix methods

The basic problem with most of the linear algebra techniques we have learned so far is that they scale
badly for large matrices. Ordinary Gaussian elimination (LU factorization), Gram–Schmidt and other
QR factorization algorithms, and techniques that computes all the eigenvalues and eigenvectors, all require
∼ n3 operations and ∼ n2 storage for n× n matrices.

This all assumes that you explicitly store and compute with all of the entries of the matrix, regardless of
their values. Hence, they are sometimes called dense matrix algorithms (the opposite of “sparse” matrices,
discussed below).

So, doubling the size of the matrix asymptotically requires about 8× more time. For any finite n, it is not
quite a factor of 8 because computers are complicated ; e.g. for larger matrices, it can use multiple processors
more efficiently:

In [2]: A1 = randn(500,500)

A2 = randn(1000,1000)

@elapsed(lufact(A2)) / @elapsed(lufact(A1))

Out[2]: 7.27003410105763

In [3]: @elapsed(qrfact(A2)) / @elapsed(qrfact(A1))

Out[3]: 12.387061180927192

In [4]: @elapsed(eigfact(A2)) / @elapsed(eigfact(A1))

Out[4]: 5.708597794682041

In [5]: @time lufact(A2)

@time eigfact(A2);

0.016880 seconds (11 allocations: 7.637 MB)

2.827680 seconds (85 allocations: 30.831 MB, 2.65% gc time)

Still, if we take the O(n3) scaling as a rough guide, this would suggest that LU-factorizing (lufact) a
106×106 matrix would take 0.02sec×10003 ∼ months and finding the eigenvectors and eigenvalues (eigfact)
would take 2.6sec× 10003 ∼ decades.

In practice, we actually usually run out of space before we run out of time. If we have 16GB
of memory, the biggest matrix we can store (each number requires 8 bytes) is 8n2 bytes = 16 × 109 =⇒
40000× 40000.

1



2 Sparse Matrices

The saving grace is that most really large matrices are sparse = mostly zeros (or have some other special
structure with similar consequences). You only have to store the nonzero entries, and you can multiply
matrix × vector quickly (you can skip the zeros).

In Julia, there are many functions to work with sparse matrices by only storing the nonzero elements.
The simplest one is the sparse function. Given a matrix A, the sparse(A) function creates a special data
structure that only stores the nonzero elements:

In [6]: A = [ 2 -1 0 0 0 0

-1 2 -1 0 0 0

0 -1 2 -1 0 0

0 0 -1 2 -1 0

0 0 0 -1 2 -1

0 0 0 0 -1 2]

Out[6]: 6×6 Array{Int64,2}:
2 -1 0 0 0 0

-1 2 -1 0 0 0

0 -1 2 -1 0 0

0 0 -1 2 -1 0

0 0 0 -1 2 -1

0 0 0 0 -1 2

In [7]: sparse(A)

Out[7]: 6×6 sparse matrix with 16 Int64 nonzero entries:

[1, 1] = 2

[2, 1] = -1

[1, 2] = -1

[2, 2] = 2

[3, 2] = -1

[2, 3] = -1

[3, 3] = 2

[4, 3] = -1

[3, 4] = -1

[4, 4] = 2

[5, 4] = -1

[4, 5] = -1

[5, 5] = 2

[6, 5] = -1

[5, 6] = -1

[6, 6] = 2

(Of course, in practice you would want to create the sparse matrix directly, rather than first making the
“dense” matrix A and then converting it to a sparse data structure.)

We’ve actually seen this several times in graph/network-based problems, where we often get matrices
of the form:

A = GTDG

where D is diagonal (very sparse!) and G is the incidence matrix. Since each graph node is typically only
connected to a few other nodes, G is sparse and so is A.

If each node is connected to a bounded number of other nodes (say, ≤ 20), then A only has ∼ n (i.e.
proportional to n, not equal to n) entries, and Ax can be computed in ∼ n operations and ∼ n storage
(unlike ∼ n2 for a general matrix).

2



So, a 106 × 106 sparse matrix might be stored in only a few megabytes and take only a few milliseconds
to multiply by a vector.

Much of large-scale linear algebra is about devising techniques to exploit sparsity or any case where
matrix × vector is faster than n2.

3 Scalable computation of eigenvalues

In fact, we already learned one algorithm that works well for sparse matrices: the power method to compute
eigenvalues and eigenvectors. If we just repeatedly multiply a random vector by A, it converges towards the
eigenvector of the largest |λ|. And since this only involves matrix × vector operations, it can take advantage
of sparse matrices.

Moreover, there are variants of this algorithm that work for the smallest eigenvalues as well, and it turns
out that there are more sophisticated variants that converge even faster than power iterations. In Julia,
these are provided by the eigs function, which lets you compute a few of the biggest or smallest eigenvalues
quickly even for huge sparse matrices.

3.1 Example

As an example, let’s consider the two-dimensional grid of masses and springs that I showed in an
earlier lecture, whose eigenvectors are the vibrating modes.

This can be thought of as a discretized approximation of a vibrating drum, which is described by the

partial differential equation ∇2h = ∂2h
∂t2 where h(x, y, t) is the height of the drum surface (= zero at the

edges of the drum). (This is an example taken from the class 18.303: Linear Partial Differential Equations
at MIT.)

For 18.06, don’t worry too much about how the matrix is constructed.

In [8]: # compute the first-derivative finite-difference matrix

# for Dirichlet boundaries, given a grid x[:] of x points

# (including the endpoints where the function = 0!).

function sdiff1(x)

N = length(x) - 2

dx1 = Float64[1/(x[i+1] - x[i]) for i = 1:N]

dx2 = Float64[-1/(x[i+1] - x[i]) for i = 2:N+1]

spdiagm((dx1,dx2), (0,-1), N+1, N)

end

flatten(X) = reshape(X, length(X))

# compute the -∇· c ∇ operator for a function c(x,y)

# and arrays x[:] and y[:] of the x and y points,

# including the endpoints where functions are zero

# (i.e. Dirichlet boundary conditions).

function Laplacian(x, y, c = (x,y) -> 1.0)

Dx = sdiff1(x)

Nx = size(Dx,2)

Dy = sdiff1(y)

Ny = size(Dy,2)

# discrete Gradient operator:

G = [kron(speye(Ny), Dx); kron(Dy, speye(Nx))]

# grids for derivatives in x and y directions

x′ = [0.5*(x[i]+x[i+1]) for i = 1:length(x)-1]

y′ = [0.5*(y[i]+y[i+1]) for i = 1:length(y)-1]

3

Power-Method.ipynb
http://math.mit.edu/~stevenj/18.303/


# evaluate c(x)

C = spdiagm([ flatten(Float64[c(X,Y) for X in x′, Y in y[2:end-1]]);

flatten(Float64[c(X,Y) for X in x[2:end-1], Y in y′]) ])

return G’ * C * G # -∇· c ∇
end

Out[8]: Laplacian (generic function with 2 methods)

The above code defines the matrix for a box-shaped drum, but for fun I will change it to define a drum
over an oddly shaped domain:

In [9]: N = 400

x = linspace(-1,1,N+2)[2:end-1]

y = x’ # a row vector

r = sqrt(x.^2 .+ y.^2) # use broadcasting (.+) to make Nx x Ny matrix of radii

θ = broadcast(atan2, y, x) # and angles

ϕ = exp(-(r - θ*0.5/π - 0.5).^2 / 0.3^2) - 0.5

imshow(ϕ .> 0, extent=[-1,1,-1,1], cmap="binary")

title("the domain")

Out[9]: PyObject <matplotlib.text.Text object at 0x324c33890>

This all eventually leads to the following matrix, whose eigenvalues $ λ =
ω̂2$arethesquaresofthefrequenciesandwhoseeigenvectorsarethevibratingmodes :

4



In [10]: x0 = linspace(-1,1,N+2) # includes boundary points, unlike x

Abox = Laplacian(x0, x0, (x,y) -> 1.0);

i = find(ϕ .> 0)

A = Abox[i,i]

size(A)

Out[10]: (59779,59779)

This is a 60000× 60000 matrix, which would too big to even store on my laptop if we stored every entry.
Because it is sparse, however, almost all of the entries are zero and we only need to store those.

The nnz function computes the number of nonzero entries, and we can use it to compute the fraction of
nonzero entries in A:

In [11]: nnz(A) / length(A)

Out[11]: 8.313882809376213e-5

Less than 0.01% of the entries are nonzero! It really pays to take advantage of this.
Now we’ll compute a few of the smallest-|λ| eigenvectors using eigs. We’ll use the Interact package to

interactively decide which eigenvalue to plot.

In [12]: u = zeros(N,N)

@time λ, X = eigs(A, nev=20, which=:SM);

f = figure()

@manipulate for which_eig in slider(1:20, value=1)

withfig(f) do

u[i] = X[:,which_eig]

umax = maxabs(u)

imshow(u, extent=[-1,1,-1,1], vmin=-umax,vmax=+umax, cmap="RdBu")

end

end

Interact.Slider{Int64}(Signal{Int64}(1, nactions=1),"",1,1:20,"horizontal",true,"d",true)

5.075585 seconds (4.33 M allocations: 401.467 MB, 3.69% gc time)

Out[12]:

5

https://github.com/JuliaLang/Interact.jl


Notice that it took less than two seconds to solve for 20 eigenvectors and eigenvalues!
This is because eigs is essentially using an algorithm like the power method, that only uses repeated

multiplication by A.
Or, sometimes, particularly to find the smallest |λ| eigenvectors, it might repeatedly divide by A, i.e. solve

Ax = b for b = A−1x. But it can’t actually compute the inverse matrix, and I said that LU factorization
was ∼ n3 in general. So, what is happening?

4 Sparse-direct solvers for Ax=b

Even if A is a sparse matrix, A−1 is generally not sparse. However, if you arrange things cleverly, often the
L and U factors are still sparse!

This leads to something called sparse-direct solvers: they solve Ax = b by ordinary Gaussian elimi-
nation to find A = LU , but they take advantage of sparse A to avoid computing with zeros. Moreover, they
first re-order the rows and columns of A so that elimination won’t introduce too many zeros — this is a
tricky problem that mostly involves graph theory, so I won’t try to explain it in 18.06.

Julia (and Matlab) both use sparse-direct algorithms automatically when you do A \ b if A is stored as
a sparse matrix. When they work (i.e. when the L and U factors are sparse), these algorithms are great:
fast, memory-efficient, reliable, and worry-free “black boxes”.

4.1 Example: Helmholtz solver

The following code solves a scalar Helmholtz equation[
−∇2 − ω2

]
u = f(x, y)

6



This equation describes the propagation of waves u from a source f at a frequency ω is the frequency.
For example, imagine water waves travelling across a shallow pond, with u(x, y) being the height of the wave,
where f represents an vibrating disturbance that creates the wave.

We discretize this into a matrix equation Au = f by discretizing space (x, y) into a grid and approximating
derivatives −∇2 by differences on the grid (this is an FDFD method).

Again, don’t worry too much about the details of this construction (take 18.303 to find out more). The
important thing is that we will have a grid (graph!) of many unknowns, but the problem is sparse because
each grid point only “talks” to its 4 nearest neighbors.

In [13]: """

Return ‘(A,Nx,Ny,x,y)‘ for the 2d Helmholtz problem.

"""

function Helmholtz2d(Lx, Ly, ε, ω; dpml=2, resolution=20, Rpml=1e-20)

# PML σ = σ0 x2/dpml2, with σ0 chosen so that

# the round-trip reflection is Rpml:

σ0 = -log(Rpml) / (4dpml/3)

M = round(Int, (Lx+2dpml) * resolution)

N = round(Int, (Ly+2dpml) * resolution)

dx = (Lx+2dpml) / (M+1)

dy = (Ly+2dpml) / (N+1)

x = (1:M) * dx - Lx/2 - dpml # x grid, centered

y = (1:N) * dy - Ly/2 - dpml # y grid, centered

# 1st-derivative matrix

x′ = ((0:M) + 0.5)*dx # 1st-derivative grid points

y′ = ((0:N) + 0.5)*dy # 1st-derivative grid points

ox = ones(M)/dx

oy = ones(N)/dy

σx = Float64[ξ < dpml ? σ0*(dpml-ξ)^2 : ξ > Lx+dpml ? σ0*(ξ-(Lx+dpml))^2 : 0.0 for ξ in x′]

σy = Float64[ξ < dpml ? σ0*(dpml-ξ)^2 : ξ > Ly+dpml ? σ0*(ξ-(Ly+dpml))^2 : 0.0 for ξ in y′]

Dx = spdiagm(1./(1+(im/ω)*σx)) * spdiagm((-ox,ox),(-1,0),M+1,M)

Dy = spdiagm(1./(1+(im/ω)*σy)) * spdiagm((-oy,oy),(-1,0),N+1,N)

Ix = speye(M)

Iy = speye(N)

return (kron(Ix, Dy.’*Dy) + kron(Dx.’*Dx, Iy) -

spdiagm(reshape(Complex128[ω^2 * ε(ξ, ζ) for ζ in y, ξ in x], length(x)*length(y))),

M, N, x, y)

end

Out[13]: Helmholtz2d

Let’s set up a scattering problem with a cylindrical scatterer (a slightly slower wave speed, e.g. a different
depth of water, inside a small cylindrical region, with a wavelength 2π/ω of 1:

In [14]: A, Nx, Ny, x, y = Helmholtz2d(20,20, (x,y) -> hypot(x,y) < 0.5 ? 12 : 1, 2π)
size(A), nnz(A) / size(A,1)

Out[14]: ((230400,230400),4.991666666666666)

Again, this is a huge matrix: 230400×230400. But it is incredibly sparse, so solving it will be no problem:

In [15]: nnz(A)/length(A)

Out[15]: 2.166521990740741e-5

7

https://en.wikipedia.org/wiki/Finite-difference_frequency-domain_method


For the right-hand side b, let’s use a “point” source on one side. We’ll use the reshape function to
convert between 2d arrays and column vectors for solving with A. Note that the solution is complex, since it
corresponds physically to an oscillating solution u(x, y)e−iωt and u has a phase angle due to the absorbing
boundary layers (which make A non-Hermitian); we’ll just plot the real part.

In [16]: b = zeros(Nx,Ny)

b[Nx÷2, Ny÷4] = 1

@time u = reshape(A \ reshape(b, Nx*Ny), Nx, Ny)

s = maxabs(real(u)) / 10

imshow(real(u), cmap="RdBu", vmin=-s, vmax=s,

extent=(minimum(x),maximum(x),minimum(y),maximum(y)))

2.925632 seconds (556.26 k allocations: 656.119 MB, 6.38% gc time)

Out[16]: PyObject <matplotlib.image.AxesImage object at 0x316f63450>

We solved a 200000×200000 matrix problem in 2–3 seconds, and less than 1GB of memory. Pretty good!

5 Iterative solvers

Unfortunately, sparse-direct solvers like those we are using above have two limitations:

• They only work if the matrix is sparse. There are lots of problems where A has some special
structure that lets you compute A ∗ x quickly, e.g. by FFTs, and avoid storing the whole matrix, but
for which A is not sparse.

8



• They scale poorly if the sparse matrix comes from a 3d grid or mesh. For an s-element 1d mesh
with n = s degrees of freedom, they have O(s) complexity. For an s× s 2d mesh with n = s2 degrees
of freedom, they take O(n log n) operations and require O(n) storage. But for a 3d s × s × s mesh
with n = s3, they take O(n2) operations and require O(n4/3) storage (and you often run out of storage
before you run out of time).

The alternative is an iterative solver, in which you supply an initial guess for the solution x (often just
x = 0) and then it iteratively improves the guess, converging (hopefully) to the solution A−1b, while using
only matrix-vector operations Ax.

Iterative solvers are the method of choice (or, more accurately, of necessity) for the very largest problems,
but they have their downsides. There are many iterative solver algorithms, and you have to know a little bit
to pick the best one. They may not converge at all for non-symmetric A, and in any case may converge very
slowly, unless you provide a “magic” matrix called a preconditioner that is specific to your problem. (It is
often a research problem in itself to find a good preconditioner!)

5.1 Toy example: Steepest-descent algorithm

If A is a real-symmetric positive-definite matrix, then solving Ax = b is equivalent to minimizing the
function:

f(x) = xTAx− xT b− bTx

(Just compute ∇f = · · · = Ax− b, which equals zero at the minimum. The definiteness of A means that
the function f is convex, so there is exactly one global minimum.)

One of the simplest iterative algorithms is just to go downhill: minimize f(x+αd) over α, where d is the
downhill direction −∇f = b−Ax = r, where r is called the residual. We can perform this line minimization
analytically for this f , for an arbitrary d, to find α = dT r/dTAd.

The steepest-descent algorithm simply performs this downhill line-minimization repeatedly, starting at
an initial guess x (typically just x=0), e.g. stopping when the norm of the residual is less than some tolerance
times the norm of b.

In [17]: function SD(A, b, x=zeros(b); tol=1e-8, maxiters=1000)

bnorm = norm(b)

r = b - A*x # initial residual

rnorm = [norm(r)] # return the array of residual norms

Ad = zeros(r) # allocate space for Ad

for i = 1:maxiters

d = r # use the steepest-descent direction

A_mul_B!(Ad, A, d) # store matvec A*r in-place in Ar

α = dot(d, r) / dot(d, Ad)

x .= x .+ α .* d # in Julia 0.6, this "fuses" into a single in-place update

r .= r .- α .* Ad # update the residual (without computing A*x again)

push!(rnorm, norm(r))

rnorm[end] ≤ tol*bnorm && break # converged

end

return x, rnorm

end

Out[17]: SD (generic function with 2 methods)

In [18]: A = rand(100,100); A = A’*A # a random SPD matrix

b = rand(100)

x, rnorm = SD(A, b, maxiters=1000)

length(rnorm), rnorm[end]/norm(b)

Out[18]: (1001,0.42293442296073136)

9



In [19]: semilogy(rnorm)

title("steepest-descent convergence")

ylabel("residual norm")

xlabel("iterations")

Out[19]: PyObject <matplotlib.text.Text object at 0x32669f0d0>

To see what’s going on, let’s try a 2× 2 matrix where we can easily visualize the progress.

In [20]: θ = 0.9 # chosen to make a nice-looking plot

Q = [cos(θ) sin(θ); -sin(θ) cos(θ)] # 2x2 rotation by θ
A = Q * diagm([10,1]) * Q’ # a 2x2 matrix with eigenvalues 10,1

b = A * [1,1] # right-hand side for solution (1,1)

x1 = linspace(-11,11,100)

contour(x1’, x1, [dot([x1,x2], A*[x1,x2]) - 2*(x1*b[1]+x2*b[2]) for x1 in x1, x2 in x1], levels=linspace(1,2000,100))

plot(1,1, "r*")

x1s = Float64[]

x2s = Float64[]

for i = 0:20

x, = SD(A, b, [-10.,-10.], maxiters=i)

push!(x1s, x[1])

push!(x2s, x[2])

end

plot(x2s, x1s, "k.-")

10



title("convergence of 2x2 steepest-descent")

Out[20]: PyObject <matplotlib.text.Text object at 0x323dd6f50>

The solution “zig-zags” down the long, narrow valley defined by the quadratic function f. This is a
common problem of steepest-descent algorithms: they tend to go towards the center of valleys (down the
“steep” direction), rather than along the valleys towards the solution.

To fix this problem, basically we need to implement some kind of “memory”: it has to “remember” that
it just “zigged” in order to avoid “zagging” back where it came from.

5.2 From steepest-descent to conjugate-gradient

The most famous way to improve steepest descent with “memory” is the conjugate-gradient algorithm. I
won’t explain it here (Shewchuk’s article is a good introduction to its relationship to steepest descent), but
the implementation ends up being almost identical to steepest descent. However, instead of setting the line-
search direction equal to the downhill direction r, the line-search direction is instead a linear combination
of r with the previous search direction:

In [21]: function CG(A, b, x=zeros(b); tol=1e-8, maxiters=1000)

bnorm = norm(b)

r = b - A*x # initial residual

rnorm = [norm(r)] # return the array of residual norms

d = copy(r) # initial direction is just steepest-descent

Ad = zeros(r) # allocate space for Ad

11

https://en.wikipedia.org/wiki/Conjugate_gradient_method
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf


for i = 1:maxiters

A_mul_B!(Ad, A, d) # store matvec A*r in-place in Ar

α = dot(d, r) / dot(d, Ad)

x .= x .+ α .* d # in Julia 0.6, this "fuses" into a single in-place update

r .= r .- α .* Ad # update the residual (without computing A*x again)

push!(rnorm, norm(r))

d .= r .+ d .* (rnorm[end]/rnorm[end-1])^2 # conjugate direction update

rnorm[end] ≤ tol*bnorm && break # converged

end

return x, rnorm

end

Out[21]: CG (generic function with 2 methods)

In [22]: A = rand(100,100); A = A’*A # a random SPD matrix

b = rand(100)

x, rnorm = CG(A, b)

length(rnorm), rnorm[end]/norm(b)

Out[22]: (178,6.3442855162928694e-9)

After some initial slow progress, the conjugate-gradient algorithm quickly zooms straight to the solution:

In [23]: semilogy(rnorm)

title("conjugate-gradient convergence")

ylabel("residual norm")

xlabel("iterations")

12



Out[23]: PyObject <matplotlib.text.Text object at 0x3249f4b10>

In our 2x2 problem, you can see that it actually converges in two steps:

In [24]: θ = 0.9 # chosen to make a nice-looking plot

Q = [cos(θ) sin(θ); -sin(θ) cos(θ)] # 2x2 rotation by θ
A = Q * diagm([10,1]) * Q’ # a 2x2 matrix with eigenvalues 10,1

b = A * [1,1] # right-hand side for solution (1,1)

x1 = linspace(-11,11,100)

contour(x1’, x1, [dot([x1,x2], A*[x1,x2]) - 2*(x1*b[1]+x2*b[2]) for x1 in x1, x2 in x1], levels=linspace(1,2000,100))

plot(1,1, "r*")

x1s = Float64[]

x2s = Float64[]

for i = 0:2

x, = CG(A, b, [-10.,-10.], maxiters=i)

push!(x1s, x[1])

push!(x2s, x[2])

end

plot(x2s, x1s, "k.-")

title("convergence of 2x2 conjugate-gradient")

Out[24]: PyObject <matplotlib.text.Text object at 0x32510d850>

13



5.3 You don’t have to write your own iterative solvers

There are several packages out there with iterative solvers that you can use, e.g. the IterativeSolvers package:

In [25]: # do this if you haven’t installed it yet: Pkg.add("IterativeSolvers")

using IterativeSolvers

WARNING: using IterativeSolvers.rnorm in module Main conflicts with an existing identifier.

In [26]: A = rand(100,100); A = A’*A # a random SPD matrix

b = rand(100)

x, ch = cg(A, b, maxiter=300)

norm(A*x - b) / norm(b)

Out[26]: 5.000813089046369e-10

In [27]: dump(ch)

IterativeSolvers.ConvergenceHistory{Float64,Array{Float64,1}}
isconverged: Bool false

threshold: Float64 1.3281146464442924e-13

mvps: Int64 301

residuals: Array{Float64}((300,)) [3.54639,3.21832,3.1756,3.48781,3.3264,3.25905,3.75059,14.1867,3.71167,3.87474 ... 1.35529e-10,2.37722e-10,1.60015e-9,1.00835e-10,1.30014e-10,2.16959e-10,1.11896e-10,5.3994e-10,2.33278e-10,1.76834e-10]

In [28]: semilogy(ch.residuals)

Out[28]: 1-element Array{Any,1}:
PyObject <matplotlib.lines.Line2D object at 0x325417d50>

14

https://github.com/JuliaMath/IterativeSolvers.jl


5.3.1 PETSc

PETSc.jl provides a Julia interface to the PETSc library: large-scale iterative and sparse solvers for
distributed-memory parallel systems. It is a bit harder to use, because it expects you to set up its own
kind of sparse matrix that works on distributed-memory systems.

5.4 Preconditioners

Most iterative solvers are greatly accelerated if you can provide a preconditioner : roughly, an approximate
inverse of A that is easy to compute. The preconditioner is applied at every step of the iteration in order to
speed up convergence.

For example, let’s consider a problem where the matrix M = L+A is a sum of the symmetric-tridiagonal
discrete Laplacian L (from above) and a small, sparse perturbation A. As our preconditioner, we’ll simply
use L, since this is a good approximation for M and L b is fast (linear time):

In [29]: n = 300

L = SymTridiagonal(diagm(ones(n)*2) - diagm(ones(n-1),-1) - diagm(ones(n-1), 1))

b = rand(n)

A = sprand(n,n,0.001) * 0.001

M = sparse(L + A)

Out[29]: 300×300 sparse matrix with 997 Float64 nonzero entries:

[1 , 1] = 2.0

[2 , 1] = -1.0

[37 , 1] = 0.000413436

[1 , 2] = -1.0

[2 , 2] = 2.0

[3 , 2] = -1.0

[2 , 3] = -1.0

[3 , 3] = 2.0

[4 , 3] = -1.0

[120, 3] = 0.00049141
...

[298, 297] = -1.0

[297, 298] = -1.0

[298, 298] = 2.0

[299, 298] = -1.0

[298, 299] = -1.0

[299, 299] = 2.0

[300, 299] = -1.0

[40 , 300] = 0.000192364

[86 , 300] = 0.000916886

[299, 300] = -1.0

[300, 300] = 2.0

Our home-brewed CG function above does not accept a preconditioner, but the IterativeSolvers package
cg function does, and it makes a huge difference in the convergence:

In [30]: x, ch = cg(M, b, maxiter=300)

x′, ch′ = cg(M, b, L, maxiter=300)

semilogy(ch.residuals, "b-")

semilogy(ch′.residuals, "r-")

xlabel("iterations")

15

https://github.com/JuliaParallel/PETSc.jl


ylabel("residual norm")

legend(["no preconditioner", "preconditioner"], loc="lower right")

Out[30]: PyObject <matplotlib.legend.Legend object at 0x32604c850>

If you can find a good preconditioner, you can often speed things up by orders of magnitude. Unfortu-
nately, finding preconditioners is hard and problem-dependent. There are some general “recipes” for things
to try, but there are many problems (like the scalar-Helmholtz problem above) where good preconditioners
are still an open research problem

16


