
18.06 - Problem Set 1 Solutions
February 16th, 2016

Problem 1 Are the following collections of vectors in R3 linearly indepen-
dent? Why or why not?

(a)


0

0
0


(b)


5

2
3

 ,

3
2
5


(c)


1

0
2

 ,

0
0
1

 ,

17
0
0


(d)


1

0
2

 ,

 0
0.00001

1

 ,

17
0
0


(e)


2

1
6

 ,

5
2
2

 ,

1
2
9


(f)


0

1
1

 ,

1
0
1

 ,

1
1
0


(g)


 1
−1
−1

 ,

−1
1
−1

 ,

−1
−1
1


Solution: In each case below let us refer to the collection of vectors in
question as S.

(a) S is not linearly independent. Indeed, 1

0
0
0

 = ~0 is a nontrivial solution

to α1~v1 + · · · + αn~vn = ~0 for S = {~v1, . . . , ~vn}. Here ~0 is our notation
for the origin of any vector space Rn.
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(b) S is linearly independent. Indeed, suppose α1

5
2
3

+ α2

3
2
5

 = ~0. By

taking the dot product of this equation with ~e2 we see that

2α1 + 2α2 = 0⇒ α1 = −α2.

Then by taking the dot product with ~e1 we see that

5α1 + 3α2 = 0⇒ 2α1 = 0⇒ α1 = 0.

But this also means α2 = 0. So our solution must have been trivial.

(c) S is not linearly independent since 17

1
0
2

− 34

0
0
1

+ 1

17
0
0

 = ~0.

(d) S is linearly independent. Let us prove this using a slightly different
technique from what we did in (b). Recall the following very important
fact (let us call it the two-out-of-three criterion)– if T is a finite collection
of vectors in Rn then any two of the following together imply the third:

• the number of vectors in T is n;

• the vectors in T span Rn;

• the vectors in T are linearly independent.

So, since #S = 3, we can show S is linearly independent by showing
it spans R3. Here is another simple but useful fact: to show that T
spans Rn it is enough to show that each standard basis vector ~ei for
i = 1, 2, . . . , n can be expressed as a linear combination of vectors in T .
Thus to show S is linearly independent we need only show that ~e1, ~e2,
and ~e3 can be expressed as a linear combination of vectors in S. We can
do that as follows:

0

1
0
2

+ 0

 0
0.00001

1

+
1

17

17
0
0

 = ~e1;

−50000

1
0
2

+ 100000

 0
0.00001

1

+
50000

17

17
0
0

 = ~e2;

1

2

1
0
2

+ 0

 0
0.00001

1

− 1

34

17
0
0

 = ~e3.
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(e) S is linearly independent. Since #S = 3, we can use follow the same
approach as the last problem and establish the S is linearly independent
by expressing ~e1, ~e2, and ~e3 as linear combinations of vectors in S, as
follows:

14

33

2
1
6

+
3

33

5
2
2

− 10

33

1
2
9

 = ~e1

−43

33

2
1
6

+
12

33

5
2
2

− 26

33

1
2
9

 = ~e2

8

33

2
1
6

− 3

33

5
2
2

− 1

33

1
2
9

 = ~e3.

(f) S is linearly independent. Again since #S = 3, we can establish the S is
linearly independent by expressing ~e1, ~e2, and ~e3 as linear combinations
of vectors in S, as follows:

−1

2

0
1
1

+
1

2

1
0
1

+
1

2

1
1
0

 = ~e1

1

2

0
1
1

− 1

2

1
0
1

+
1

2

1
1
0

 = ~e2

1

2

0
1
1

+
1

2

1
0
1

− 1

2

1
1
0

 = ~e3.

(g) S is linearly independent. Again since #S = 3, we can establish the S is
linearly independent by expressing ~e1, ~e2, and ~e3 as linear combinations
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of vectors in S, as follows:

0

 1
−1
−1

− 1

2

−1
1
−1

− 1

2

−1
−1
1

 = ~e1

−1

2

 1
−1
−1

+ 0

−1
1
−1

− 1

2

−1
−1
1

 = ~e2

−1

2

 1
−1
−1

− 1

2

−1
1
−1

+ 0

−1
−1
1

 = ~e3.

Problem 2 Write, if possible, each of the vectors ~e1, ~e2, ~e3 ∈ R3 as a linear
combination of the following collections of vectors. If it is not possible,
explain why not.

(a)


0

0
0


(b)


5

2
3

 ,

3
2
5


(c)


1

0
2

 ,

0
0
1

 ,

17
0
0


(d)


1

0
2

 ,

 0
0.00001

1

 ,

17
0
0


(e)


2

1
6

 ,

5
2
2

 ,

1
2
9


(f)


0

1
1

 ,

1
0
1

 ,

1
1
0


(g)


 1
−1
−1

 ,

−1
1
−1

 ,

−1
−1
1


4



Solution: In each case below let us refer to the collection of vectors in
question as S.

(a) It is clearly not possible to express any of the vectors ~e1, ~e2, or ~e3 as a
linear combination of vectors in S. Indeed, the set of linear combinations
of vectors of S is just the point {~0}.

(b) It is not possible to express any of the vectors ~e1, ~e2, or ~e3 as a linear
combination of vectors in S. Suppose that ~e1 could be written as a
linear combination of vectors in S: then we have

α1

5
2
3

+ α2

3
2
5

 = ~e1

for some α1, α2 ∈ R2; taking the dot product of this equation with ~e2
we see α2 = −α1; next, taking the dot product with ~e1 we see 5α1 +
3α2 = 1 ⇒ α1 = 1

2 ; and finally taking the dot product with ~e3 we see
3α1 + 5α2 = 0 ⇒ α1 = 0 ⇒ 1

2 = 0, a contradiction. So indeed ~e1
cannot be so expressed. Next suppose ~e2 could be written as a linear
combination of vectors in S: then we have

α1

5
2
3

+ α2

3
2
5

 = ~e2

for some α1, α2 ∈ R2; taking the dot product with ~e1 we see 5α1+3α2 =
0 ⇒ α2 = −3

5α1; next, by taking the dot product with ~e2 we see that
2α1+2α2 = 1⇒ 2α1− 6

5α1 = 1⇒ α1 = 5
4 ; finally taking the dot product

with ~e3 we see that 5α1 + 3α2 = 0⇒ 5α1 + 9
5α1 = 0⇒ α1 = 0⇒ 5

4 = 0,
a contradiction. So indeed ~e2 cannot be so expressed. Finally, suppose
~e3 could be written as a linear combination of vectors in S: then we
have

α1

5
2
3

+ α2

3
2
5

 = ~e3

for some α1, α2 ∈ R2; taking the dot product with ~e2 we have 2α1 +
2α2 = 0 ⇒ α2 = −α1; next, taking the dot product with ~e1 we have
5α1 + 3α2 = 0 ⇒ 2α1 = 0 ⇒ α1 = 0; finally, taking the dot product
with ~e3 we have 3α1 + 5α2 = 1 ⇒ −2α1 = 1 ⇒ α1 = −1

2 ⇒ 0 = −1
2 , a

contradiction. So indeed ~e3 cannot be so expressed.
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(c) We can express ~e2 and ~e3 as linear combinations of vectors in S as
follows:

0

1
0
2

+ 1

0
0
1

+ 0

17
0
0

 = ~e2

0

1
0
2

+ 0

0
0
1

+
1

17

17
0
0

 = ~e3.

On the other hand, we cannot express ~e1 as a linear combination of
vectors in S. Why is this? Because if we could, then all the basis
vectors of R3 would lie in the span of S, which would mean S would
span R3. But by the two-out-of-three criterion, that would imply that
S was linearly independent. And we have seen in Problem 1 that S is
not linearly independent.

(d) It is possible to write each of ~e1, ~e2, and ~e3 as a linear combination of
vectors in S and indeed we already did this in Problem 1.

(e) It is possible to write each of ~e1, ~e2, and ~e3 as a linear combination of
vectors in S and indeed we already did this in Problem 1.

(f) It is possible to write each of ~e1, ~e2, and ~e3 as a linear combination of
vectors in S and indeed we already did this in Problem 1.

(g) It is possible to write each of ~e1, ~e2, and ~e3 as a linear combination of
vectors in S and indeed we already did this in Problem 1.

Problem 3 How many solutions does each of the following systems of linear
equations have? (Answer without solving them, if you can!)

(a)

x+ 17z = 3

2x+ z = 0

(b)

5x− 7y + 17z = 2

19x+ 12y − 9z = 88

−113x+ y − z = −1
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(c)

x+ y + 2z = 1

w + x+ 2y = 1

v + w + 2x = 1

u+ v + 2w = 1

(d)

u+ v + w + x+ y − 2z = 0

u+ v + w + x− 2y + z = 0

u+ v + w − 2x+ y + z = 0

u+ v − 2w + x+ y + z = 0

u− 2v + w + x+ y + z = 0

−2u+ v + q + x+ y + z = 0

Solution: First we make a general observation. A set T = {~v1, . . . , ~vn} of
vectors in Rn satisfying any two of the two-out-of-three criterion is called a
basis. If T is a basis, then for any ~u ∈ Rn there are unique α1, . . . , αn ∈ R
such that ~u = α1~v1 + · · · + αn~vn. Because T spans Rn there are certainly
some scalars like this. Why are they unique? Suppose to the contrary that
there were also β1, . . . , βn ∈ R with ~u = β1~v1 + · · · + βn~vn and there is
at least one i such that αi 6= βi. Then by subtracting the two equations
we would have ~0 = (α1 − β1)~v1 + · · · + (αn − βn)~vn, with (αi − βi) 6= 0,
contradicting the fact that T is linearly independent. So indeed there is a
unique way to express any vector as a linear combination of basis vectors.
We proceed to the problems:

(a) There is exactly one solution. Observe that a solution x, z ∈ R to
the equation is the same thing as a solution x, z ∈ R to the following
equation of vectors:

x

(
1
2

)
+ z

(
17
1

)
= (3, 0).

Now we will apply our general observation. We claim

{(
1
2

)
,

(
17
1

)}
is a basis of R2. Indeed, by the two-out-of-three criteria we just need
to show that they are linearly independent: but this is clear because
neither vector is a scalar multiple of the other. So indeed there is a
unique such solution x, y ∈ R.
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(b) Again, there is exactly one solution. Again, a solution x, y, z ∈ R to the
equation is the same as a solution x, y, z ∈ R to the following equation
of vectors:

x

 5
19
−113

+ y

−7
12
1

+ z

17
−9
−1

 =

1
1
1

 .

So again we will apply our general observation. We claim

S :=


 5

19
−113

 ,

−7
12
1

 ,

17
−9
−1


is a basis of R3. To show this, by the two-out-of-three criterion, we
can show it spans R3; in particular we can express ~e1, ~e2, ~e3 as linear
combinations of elements of S as follows:

− 3

16108

 5
19
−113

+
259

4027

−7
12
1

+
1375

16108

17
−9
−1

 = ~e1

5

8054

 5
19
−113

+
479

4027

−7
12
1

+
393

8054

17
−9
−1

 = ~e2

− 141

16108

 5
19
−113

+
92

4027

−7
12
1

+
193

16108

17
−9
−1

 = ~e3

(c) There are infinitely many solutions. A solution u, v, w, x, y, z ∈ R to
the equation is the same thing as a solution u, v, w, x, y, z ∈ R to the
following equation of vectors:

u~r1 + v~r2 + w~r3 + x~r4 + y~r5 + z~r6 =


1
1
1
1

 .
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where

~r1 :=


0
0
0
1

 ~r2 :=


0
0
1
1

 ~r3 :=


0
1
0
2



~r4 :=


1
1
2
0

 ~r5 :=


1
2
0
0

 ~r6 :=


2
0
0
0



First note that u = 2, v = −1, w = 0, x = 1, y = 0, z = 0 is one solution.
Next, note that ~r1, ~r2, ~r3, ~r4, ~r5, ~r6 must be linearly dependent in R4,
just because the maximal size of set of linearly independent vectors in
R4 is the dimension of the space, namely, 4. But that means we can
find α1, . . . , α6 ∈ R such that

α1~r1 + α2~r2 + α3~r3 + α4~r4 + α5~r5 + α6~r6 = ~0

and so that not αi all zero. But then

(2 + tα1)~r1 + (−1 + tα2)~r2 + tα3~r3 + (1 + tα4)~r4 + tα5~r5 + tα6~r6 =


1
1
1
1


for all t ∈ R, and these are all different because αi 6= 0 for some i, so
indeed we have infinitely many solutions.

(d) There is exactly one solution. Observe that a solutionu, v, w, x, y, z ∈ R
to the equation is the same thing as a solution u, v, w, x, y, z ∈ R to the
following equation of vectors:

u~r6 + v~r5 + w~r4 + x~r3 + y~r2 + z~r1 =



0
0
0
0
0
0


where ~ri = −3~ei +

∑6
j=1 ~ej . Here the ~ej are the standard basis vectors

of R6. As in (1) and (2) above, we will apply our general observation.
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To that end, we claim that S := {~r1, . . . , ~r6} is a basis of R6. To show
this, by the two-out-of-three criterion, we can show it spans R6; in
particular we can express ~e1, . . . , ~e6 as linear combinations of elements
of S as follows:

−2

9
~r1 +

1

9
~r2 +

1

9
~r3 +

1

9
~r4 +

1

9
~r5 +

1

9
~r6 = ~e1

1

9
~r1 −

2

9
~r2 +

1

9
~r3 +

1

9
~r4 +

1

9
~r5 +

1

9
~r6 = ~e2

1

9
~r1 +

1

9
~r2 −

2

9
~r3 +

1

9
~r4 +

1

9
~r5 +

1

9
~r6 = ~e3

1

9
~r1 +

1

9
~r2 +

1

9
~r3 −

2

9
~r4 +

1

9
~r5 +

1

9
~r6 = ~e4

1

9
~r1 +

1

9
~r2 +

1

9
~r3 +

1

9
~r4 −

2

9
~r5 +

1

9
~r6 = ~e5

1

9
~r1 +

1

9
~r2 +

1

9
~r3 +

1

9
~r4 +

1

9
~r5 −

2

9
~r6 = ~e6.

Problem 4 What’s the angle between the following vectors? Compute the
projection π~a(~b) in each case.

(a) ~a =

2
2
1

 and ~b =

 3
4
12



(b) ~a =

 4
−4
7

 and ~b =

−1
4
−8



(c) ~a =


169
−520
−561
425

 and ~b =


−1
1
−1
1



(d) ~a =



1
1
0
1
0
1

 and ~b =



0
1
1
1
1
0


Solution: In all cases below we use θ to denote the angle between ~a and ~b:
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(a) We know cos(θ) = ~a·~b
|~a||~b|

= 26√
9
√
169

= 2
3 . Let us use arccos to de-

note the unique bijective function from [−1, 1] to [0, π] that satisfies
arccos(cos(θ)) = θ for all θ ∈ [0, π]. Thus θ = arccos(23) ≈ 48.19◦. Then

the projection π~a(~b) is π~a(~b) = |~b|
|~a|cos(θ)~a = 26

9 ~a =


52
9
52
9
26
9

.

(b) We have cos(θ) = ~a·~b
|~a||~b|

= −76√
81
√
81

= −76
81 . Thus θ = arccos(−7681 ) ≈

159.8◦. And the projection is π~a(~b) = |~b|
|~a|cos(θ)~a = −76

81~a =


304
81
−304
81
532
81

.

(c) We have cos(θ) = ~a·~b
|~a||~b|

= 297√
794307

√
4

= 297
2
√
794307

. Thus θ = arccos( 297
2
√
794307

) ≈

80.4◦. And the projection is π~a(~b) = |~b|
|~a|cos(θ)~a = 297

794307~a =


16731
264769
−51480
264769
−55539
264769
42075
264769

.

(d) We have cos(θ) = ~a·~b
|~a||~b|

= 2√
4
√
4

= 1
2 . Thus θ = arccos(12) = 60◦ (or π

3

radians). And the projection is π~a(~b) = |~b|
|~a|cos(θ)~a = 1

2~a =



1
2
1
2

0
1
2

0
1
2


.

Problem 5 What’s the length of the vector

0
1
2
...

23
24


∈ R25?

Solution: It can easily be proved by induction that
∑n

i=0 i
2 = n(n+1)(2n+1)

6
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for all n = 0, 1, 2, . . .. Thus the length of this vector is
√

02 + 12 + · · ·+ 242 =√
24(25)(49)

6 = 70.

Problem 6 Show that any unit vector û ∈ Rn+1 can be written as

û =



cos(φ1)
sin(φ1) cos(φ2)

sin(φ1) sin(φ2) cos(φ3)
...

sin(φ1) sin(φ2) · · · sin(φn−1) cos(θ)
sin(φ1) sin(φ2) · · · sin(φn−1) sin(θ)


with φ1, φ2, . . . , φn−1 ∈ [0, π] and θ ∈ [0, 2π). Draw a picture for n = 1 and
n = 2 to illustrate.

Solution: Let û =


u1
u2
...

un+1

 be a unit vector in Rn+1. We proceed to define

φ1, φ2, . . . , φn−1 ∈ [0, π] and θ ∈ [0, 2π) so that û is as in the statement of
the problem. First let us define the φi. We will do so recursively. Suppose
that we have already found φ1, . . . , φi−1 ∈ [0, π] so that

u1 = cos(φ1) (1)

u2 = sin(φ1) cos(φ2)

...

ui−1 = sin(φ1) sin(φ2) · · · sin(φi−2) cos(φi−1)

We want to find a φi ∈ [0, π] so that

ui = sin(φ1) sin(φ2) · · · sin(φi−1) cos(φi) (2)

To that end, we claim that for 1 ≤ k ≤ i− 1 we have

sin2(φ1) sin2(φ2) · · · sin2(φk) = 1− u21 − u22 − · · · − u2k. (3)

The case k = 1 of (3) follows from the assumption in (1) that u1 = cos(φ1).
So suppose k > 1 and the claim holds for k − 1. Then

sin2(φ1) sin2(φ2) · · · sin2(φk) = sin2(φ1) sin2(φ2) · · · sin2(φk−1)(1− cos2(φk))

= sin2(φ1) · · · sin2(φk−1)− sin2(φ1) · · · sin2(φk−1) cos2(φk)

= 1− u1 − u2 − · · · − uk−1 − uk
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where in the last line we use our inductive hypothesis and the assump-
tion in (1) that uk = sin2(φ1) sin2(φ2) · · · sin2(φk−1) cos2(φk). So indeed (3)
holds. Now we proceed to define φi to satisfy (2). Note that û being a unit
vector is equivalent to u21 + u22 + · · ·+ u2n+1 = 1. So in particular we have

0 ≤ 1− u21 − u22 − · · · − u2i−1 ≤ 1.

First suppose that 1 − u21 − u22 − · · · − u2i−1 = 0. Then note that ui = 0
because otherwise u21 + u22 + ·+ u2n+1 > 1. Thus in this case we can choose
any φi ∈ [0, π] and (2) will be satisfied, since by (3) we have

sin2(φ1) · · · sin2(φi) = 1− u21 − u22 − · · · − u2i−1 = 0

which implies
sin(φ1) sin(φ2) · · · sin(φi) = 0.

So now let us suppose that 0 < 1−u21−u22− · · ·−u2i−1 ≤ 1. Then note that

0 ≤ u2i ≤ 1− u21 − u22 − · · · − u2i−1,

again by using the fact that û is a unit vector. Diving through we get

0 ≤ u2i
1− u21 − u22 − · · · − u2i−1

≤ 1,

and then taking square roots and using (3) we have

0 ≤
∣∣∣∣ ui
sin(φ1) sin(φ2) · · · sin(φi−1)

∣∣∣∣ ≤ 1.

So in this case we can define φi := arccos
(

ui
sin(φ1) sin(φ2)··· sin(φi−1)

)
∈ [0, π]

and we will satisfy (2).
We have now successfully defined φ1, . . . , φn−1 ∈ [0, π] so that

u1 = cos(φ1)

u2 = sin(φ1) cos(φ2)

...

un−1 = sin(φ1) sin(φ2) · · · sin(φn−2) cos(φn−1)

Moreover, the same argument used to establish (3) still applies to i := n− 1
and so we have

sin2(φ1) sin2(φ2) · · · sin2(φn−1) = 1− u21 − u22 − · · · − u2n−1. (4)
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We want to find θ ∈ [0, 2π) so that

un = sin(φ1) sin(φ2) · · · sin(φn−1) cos(θ) (5)

un+1 = sin(φ1) sin(φ2) · · · sin(φn−1) sin(θ)

As before we have 0 ≤ 1− u21 − u22 − · · · − u2n−1 ≤ 1. Suppose 1− u21 − u22 −
· · · − u2n−1 = 0. Then un = un+1 = 0 again because û is a unit vector. In
this case we can choose any θ ∈ [0, 2π) and we will satisfy (5) because by (4)
we have

sin2(φ1) sin2(φ2) · · · sin2(φn−1) = 1− u21 − u22 − · · · − u2n−1 = 0

which implies
sin(φ1) sin(φ2) · · · sin(φn−1) = 0.

So now suppose 0 < 1− u21 − u22 − · · · − u2n−1 ≤ 1. Then as before

0 ≤
∣∣∣∣ un
sin(φ1) sin(φ2) · · · sin(φn−1)

∣∣∣∣ ≤ 1.

Let us define θ ∈ [0, 2π) by

θ :=

arccos
(

un
sin(φ1) sin(φ2)··· sin(φn−1)

)
if un+1

sin(φ1) sin(φ2)··· sin(φn−1)
≥ 0,

2π − arccos
(

un
sin(φ1) sin(φ2)··· sin(φn−1)

)
otherwise.

Why does this definition satisfy (5)? Well, it clearly satisfies the first equa-
tion in (5) because

cos

(
2π − arccos

(
ui

sin(φ1) sin(φ2) · · · sin(φi−1)

))
= cos

(
arccos

(
ui

sin(φ1) sin(φ2) · · · sin(φi−1)

))
=

ui
sin(φ1) sin(φ2) · · · sin(φi−1)

because cos is even and has period 2π. And as to the second equation in (5)
we can check that

sin2(φ1) sin2(φ2) · · · sin2(φn−1) sin2(θ) = sin2(φ1) sin2(φ2) · · · sin2(φn−1)(1− cos2(θ))

= sin2(φ1) · · · sin2(φn−1)− sin2(φ1) · · · sin2(φn−1) cos2(θ)

= 1− u21 − u22 − · · · − u2n−1 − u2n
= u2n+1
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because 1 =
∑n+1

i=1 u
2
i . So sin(φ1) sin(φ2) · · · sin(φn−1) sin(θ) = ±un+1, and

the two cases in our definition θ deal with this choice of sign.
The case n = 1 is the well-known polar coordinates:

The case n = 2 is spherical coordinates:

Problem 7 Suppose û1, û2, . . . , ûk ∈ Rn is a collection of vectors such that

ûi · ûj =

{
0 if i 6= j

1 if i = j.

Show that û1, û2, . . . , ûk are linearly independent.

Solution: Let û1, û2, . . . , ûk ∈ Rn satisfy the above property. Suppose that

α1û1 + α2û2 + · · ·+ αkûk = ~0

for α1, . . . , αk ∈ R. By taking the dot product of the above equation with
ûi, we see that αi = 0. Thus for all i, αi = 0, which means our solution
must’ve been trivial. So indeed the vectors are linearly independent.
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