18.06 - Problem Set 1 Solutions

February 16th, 2016
Problem 1 Are the following collections of vectors in \mathbf{R}^{3} linearly independent? Why or why not?
(a) $\left\{\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)\right\}$
(b) $\left\{\left(\begin{array}{l}5 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}3 \\ 2 \\ 5\end{array}\right)\right\}$
(c) $\left\{\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{c}17 \\ 0 \\ 0\end{array}\right)\right\}$
(d) $\left\{\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right),\left(\begin{array}{c}0 \\ 0.00001 \\ 1\end{array}\right),\left(\begin{array}{c}17 \\ 0 \\ 0\end{array}\right)\right\}$
(e) $\left\{\left(\begin{array}{l}2 \\ 1 \\ 6\end{array}\right),\left(\begin{array}{l}5 \\ 2 \\ 2\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 9\end{array}\right)\right\}$
(f) $\left\{\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)\right\}$
(g) $\left\{\left(\begin{array}{c}1 \\ -1 \\ -1\end{array}\right),\left(\begin{array}{c}-1 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right)\right\}$

Solution: In each case below let us refer to the collection of vectors in question as S.
(a) S is not linearly independent. Indeed, $1\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)=\overrightarrow{0}$ is a nontrivial solution to $\alpha_{1} \vec{v}_{1}+\cdots+\alpha_{n} \vec{v}_{n}=\overrightarrow{0}$ for $S=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$. Here $\overrightarrow{0}$ is our notation for the origin of any vector space \mathbf{R}^{n}.
(b) S is linearly independent. Indeed, suppose $\alpha_{1}\left(\begin{array}{l}5 \\ 2 \\ 3\end{array}\right)+\alpha_{2}\left(\begin{array}{l}3 \\ 2 \\ 5\end{array}\right)=\overrightarrow{0}$. By taking the dot product of this equation with \vec{e}_{2} we see that

$$
2 \alpha_{1}+2 \alpha_{2}=0 \Rightarrow \alpha_{1}=-\alpha_{2} .
$$

Then by taking the dot product with \vec{e}_{1} we see that

$$
5 \alpha_{1}+3 \alpha_{2}=0 \Rightarrow 2 \alpha_{1}=0 \Rightarrow \alpha_{1}=0 .
$$

But this also means $\alpha_{2}=0$. So our solution must have been trivial.
(c) S is not linearly independent since $17\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)-34\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)+1\left(\begin{array}{c}17 \\ 0 \\ 0\end{array}\right)=\overrightarrow{0}$.
(d) S is linearly independent. Let us prove this using a slightly different technique from what we did in (b). Recall the following very important fact (let us call it the two-out-of-three criterion)- if T is a finite collection of vectors in \mathbb{R}^{n} then any two of the following together imply the third:

- the number of vectors in T is n;
- the vectors in T span \mathbb{R}^{n};
- the vectors in T are linearly independent.

So, since $\# S=3$, we can show S is linearly independent by showing it spans \mathbb{R}^{3}. Here is another simple but useful fact: to show that T spans \mathbb{R}^{n} it is enough to show that each standard basis vector \vec{e}_{i} for $i=1,2, \ldots, n$ can be expressed as a linear combination of vectors in T. Thus to show S is linearly independent we need only show that \vec{e}_{1}, \vec{e}_{2}, and \vec{e}_{3} can be expressed as a linear combination of vectors in S. We can do that as follows:

$$
\begin{aligned}
0\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)+0\left(\begin{array}{c}
0 \\
0.00001 \\
1
\end{array}\right)+\frac{1}{17}\left(\begin{array}{c}
17 \\
0 \\
0
\end{array}\right) & =\vec{e}_{1} ; \\
-50000\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)+100000\left(\begin{array}{c}
0 \\
0.00001 \\
1
\end{array}\right)+\frac{50000}{17}\left(\begin{array}{c}
17 \\
0 \\
0
\end{array}\right) & =\vec{e}_{2} ; \\
\frac{1}{2}\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)+0\left(\begin{array}{c}
0 \\
0.00001 \\
1
\end{array}\right)-\frac{1}{34}\left(\begin{array}{c}
17 \\
0 \\
0
\end{array}\right) & =\vec{e}_{3} .
\end{aligned}
$$

(e) S is linearly independent. Since $\# S=3$, we can use follow the same approach as the last problem and establish the S is linearly independent by expressing \vec{e}_{1}, \vec{e}_{2}, and \vec{e}_{3} as linear combinations of vectors in S, as follows:

$$
\begin{aligned}
\frac{14}{33}\left(\begin{array}{l}
2 \\
1 \\
6
\end{array}\right)+\frac{3}{33}\left(\begin{array}{l}
5 \\
2 \\
2
\end{array}\right)-\frac{10}{33}\left(\begin{array}{l}
1 \\
2 \\
9
\end{array}\right)=\vec{e}_{1} \\
-\frac{43}{33}\left(\begin{array}{l}
2 \\
1 \\
6
\end{array}\right)+\frac{12}{33}\left(\begin{array}{l}
5 \\
2 \\
2
\end{array}\right)-\frac{26}{33}\left(\begin{array}{l}
1 \\
2 \\
9
\end{array}\right)=\vec{e}_{2} \\
\frac{8}{33}\left(\begin{array}{l}
2 \\
1 \\
6
\end{array}\right)-\frac{3}{33}\left(\begin{array}{l}
5 \\
2 \\
2
\end{array}\right)-\frac{1}{33}\left(\begin{array}{l}
1 \\
2 \\
9
\end{array}\right)=\vec{e}_{3} .
\end{aligned}
$$

(f) S is linearly independent. Again since $\# S=3$, we can establish the S is linearly independent by expressing \vec{e}_{1}, \vec{e}_{2}, and \vec{e}_{3} as linear combinations of vectors in S, as follows:

$$
\begin{aligned}
&-\frac{1}{2}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\vec{e}_{1} \\
& \frac{1}{2}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)-\frac{1}{2}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\vec{e}_{2} \\
& \frac{1}{2}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)-\frac{1}{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\vec{e}_{3} .
\end{aligned}
$$

(g) S is linearly independent. Again since $\# S=3$, we can establish the S is linearly independent by expressing \vec{e}_{1}, \vec{e}_{2}, and \vec{e}_{3} as linear combinations
of vectors in S, as follows:

$$
\begin{aligned}
& 0\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right)-\frac{1}{2}\left(\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right)-\frac{1}{2}\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right)=\vec{e}_{1} \\
&-\frac{1}{2}\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right)+0\left(\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right)-\frac{1}{2}\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right)=\vec{e}_{2} \\
&-\frac{1}{2}\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right)-\frac{1}{2}\left(\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right)+0\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right)=\vec{e}_{3}
\end{aligned}
$$

Problem 2 Write, if possible, each of the vectors $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3} \in \mathbf{R}^{3}$ as a linear combination of the following collections of vectors. If it is not possible, explain why not.
(a) $\left\{\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)\right\}$
(b) $\left\{\left(\begin{array}{l}5 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}3 \\ 2 \\ 5\end{array}\right)\right\}$
(c) $\left\{\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{c}17 \\ 0 \\ 0\end{array}\right)\right\}$
(d) $\left\{\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right),\left(\begin{array}{c}0 \\ 0.00001 \\ 1\end{array}\right),\left(\begin{array}{c}17 \\ 0 \\ 0\end{array}\right)\right\}$
(e) $\left\{\left(\begin{array}{l}2 \\ 1 \\ 6\end{array}\right),\left(\begin{array}{l}5 \\ 2 \\ 2\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 9\end{array}\right)\right\}$
(f) $\left\{\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)\right\}$
(g) $\left\{\left(\begin{array}{c}1 \\ -1 \\ -1\end{array}\right),\left(\begin{array}{c}-1 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right)\right\}$

Solution: In each case below let us refer to the collection of vectors in question as S.
(a) It is clearly not possible to express any of the vectors \vec{e}_{1}, \vec{e}_{2}, or \vec{e}_{3} as a linear combination of vectors in S. Indeed, the set of linear combinations of vectors of S is just the point $\{\overrightarrow{0}\}$.
(b) It is not possible to express any of the vectors \vec{e}_{1}, \vec{e}_{2}, or \vec{e}_{3} as a linear combination of vectors in S. Suppose that \vec{e}_{1} could be written as a linear combination of vectors in S : then we have

$$
\alpha_{1}\left(\begin{array}{l}
5 \\
2 \\
3
\end{array}\right)+\alpha_{2}\left(\begin{array}{l}
3 \\
2 \\
5
\end{array}\right)=\vec{e}_{1}
$$

for some $\alpha_{1}, \alpha_{2} \in \mathbf{R}^{2}$; taking the dot product of this equation with \vec{e}_{2} we see $\alpha_{2}=-\alpha_{1}$; next, taking the dot product with \vec{e}_{1} we see $5 \alpha_{1}+$ $3 \alpha_{2}=1 \Rightarrow \alpha_{1}=\frac{1}{2}$; and finally taking the dot product with \vec{e}_{3} we see $3 \alpha_{1}+5 \alpha_{2}=0 \Rightarrow \alpha_{1}=0 \Rightarrow \frac{1}{2}=0$, a contradiction. So indeed \vec{e}_{1} cannot be so expressed. Next suppose \vec{e}_{2} could be written as a linear combination of vectors in S : then we have

$$
\alpha_{1}\left(\begin{array}{l}
5 \\
2 \\
3
\end{array}\right)+\alpha_{2}\left(\begin{array}{l}
3 \\
2 \\
5
\end{array}\right)=\vec{e}_{2}
$$

for some $\alpha_{1}, \alpha_{2} \in \mathbf{R}^{2}$; taking the dot product with \vec{e}_{1} we see $5 \alpha_{1}+3 \alpha_{2}=$ $0 \Rightarrow \alpha_{2}=-\frac{3}{5} \alpha_{1}$; next, by taking the dot product with \vec{e}_{2} we see that $2 \alpha_{1}+2 \alpha_{2}=1 \Rightarrow 2 \alpha_{1}-\frac{6}{5} \alpha_{1}=1 \Rightarrow \alpha_{1}=\frac{5}{4}$; finally taking the dot product with \vec{e}_{3} we see that $5 \alpha_{1}+3 \alpha_{2}=0 \Rightarrow 5 \alpha_{1}+\frac{9}{5} \alpha_{1}=0 \Rightarrow \alpha_{1}=0 \Rightarrow \frac{5}{4}=0$, a contradiction. So indeed \vec{e}_{2} cannot be so expressed. Finally, suppose \vec{e}_{3} could be written as a linear combination of vectors in S : then we have

$$
\alpha_{1}\left(\begin{array}{l}
5 \\
2 \\
3
\end{array}\right)+\alpha_{2}\left(\begin{array}{l}
3 \\
2 \\
5
\end{array}\right)=\vec{e}_{3}
$$

for some $\alpha_{1}, \alpha_{2} \in \mathbf{R}^{2}$; taking the dot product with \vec{e}_{2} we have $2 \alpha_{1}+$ $2 \alpha_{2}=0 \Rightarrow \alpha_{2}=-\alpha_{1}$; next, taking the dot product with \vec{e}_{1} we have $5 \alpha_{1}+3 \alpha_{2}=0 \Rightarrow 2 \alpha_{1}=0 \Rightarrow \alpha_{1}=0$; finally, taking the dot product with \vec{e}_{3} we have $3 \alpha_{1}+5 \alpha_{2}=1 \Rightarrow-2 \alpha_{1}=1 \Rightarrow \alpha_{1}=-\frac{1}{2} \Rightarrow 0=-\frac{1}{2}$, a contradiction. So indeed \vec{e}_{3} cannot be so expressed.
(c) We can express \vec{e}_{2} and \vec{e}_{3} as linear combinations of vectors in S as follows:

$$
\begin{aligned}
0\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)+1\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)+0\left(\begin{array}{c}
17 \\
0 \\
0
\end{array}\right) & =\vec{e}_{2} \\
0\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)+0\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)+\frac{1}{17}\left(\begin{array}{c}
17 \\
0 \\
0
\end{array}\right) & =\vec{e}_{3} .
\end{aligned}
$$

On the other hand, we cannot express \vec{e}_{1} as a linear combination of vectors in S. Why is this? Because if we could, then all the basis vectors of \mathbb{R}^{3} would lie in the span of S, which would mean S would span \mathbb{R}^{3}. But by the two-out-of-three criterion, that would imply that S was linearly independent. And we have seen in Problem 1 that S is not linearly independent.
(d) It is possible to write each of \vec{e}_{1}, \vec{e}_{2}, and \vec{e}_{3} as a linear combination of vectors in S and indeed we already did this in Problem 1.
(e) It is possible to write each of \vec{e}_{1}, \vec{e}_{2}, and \vec{e}_{3} as a linear combination of vectors in S and indeed we already did this in Problem 1.
(f) It is possible to write each of \vec{e}_{1}, \vec{e}_{2}, and \vec{e}_{3} as a linear combination of vectors in S and indeed we already did this in Problem 1.
(g) It is possible to write each of \vec{e}_{1}, \vec{e}_{2}, and \vec{e}_{3} as a linear combination of vectors in S and indeed we already did this in Problem 1.

Problem 3 How many solutions does each of the following systems of linear equations have? (Answer without solving them, if you can!)
(a)

$$
\begin{array}{r}
x+17 z=3 \\
2 x+z=0
\end{array}
$$

(b)

$$
\begin{aligned}
5 x-7 y+17 z & =2 \\
19 x+12 y-9 z & =88 \\
-113 x+y-z & =-1
\end{aligned}
$$

(c)

$$
\begin{array}{r}
x+y+2 z=1 \\
w+x+2 y=1 \\
v+w+2 x=1 \\
u+v+2 w=1
\end{array}
$$

(d)

$$
\begin{array}{r}
u+v+w+x+y-2 z=0 \\
u+v+w+x-2 y+z=0 \\
u+v+w-2 x+y+z=0 \\
u+v-2 w+x+y+z=0 \\
u-2 v+w+x+y+z=0 \\
-2 u+v+q+x+y+z=0
\end{array}
$$

Solution: First we make a general observation. A set $T=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ of vectors in \mathbf{R}^{n} satisfying any two of the two-out-of-three criterion is called a basis. If T is a basis, then for any $\vec{u} \in \mathbf{R}^{n}$ there are unique $\alpha_{1}, \ldots, \alpha_{n} \in \mathbf{R}$ such that $\vec{u}=\alpha_{1} \vec{v}_{1}+\cdots+\alpha_{n} \vec{v}_{n}$. Because T spans \mathbf{R}^{n} there are certainly some scalars like this. Why are they unique? Suppose to the contrary that there were also $\beta_{1}, \ldots, \beta_{n} \in \mathbf{R}$ with $\vec{u}=\beta_{1} \vec{v}_{1}+\cdots+\beta_{n} \vec{v}_{n}$ and there is at least one i such that $\alpha_{i} \neq \beta_{i}$. Then by subtracting the two equations we would have $\overrightarrow{0}=\left(\alpha_{1}-\beta_{1}\right) \vec{v}_{1}+\cdots+\left(\alpha_{n}-\beta_{n}\right) \vec{v}_{n}$, with $\left(\alpha_{i}-\beta_{i}\right) \neq 0$, contradicting the fact that T is linearly independent. So indeed there is a unique way to express any vector as a linear combination of basis vectors. We proceed to the problems:
(a) There is exactly one solution. Observe that a solution $x, z \in \mathbf{R}$ to the equation is the same thing as a solution $x, z \in \mathbf{R}$ to the following equation of vectors:

$$
x\binom{1}{2}+z\binom{17}{1}=(3,0) .
$$

Now we will apply our general observation. We claim $\left\{\binom{1}{2},\binom{17}{1}\right\}$ is a basis of \mathbf{R}^{2}. Indeed, by the two-out-of-three criteria we just need to show that they are linearly independent: but this is clear because neither vector is a scalar multiple of the other. So indeed there is a unique such solution $x, y \in \mathbf{R}$.
(b) Again, there is exactly one solution. Again, a solution $x, y, z \in \mathbf{R}$ to the equation is the same as a solution $x, y, z \in \mathbf{R}$ to the following equation of vectors:

$$
x\left(\begin{array}{c}
5 \\
19 \\
-113
\end{array}\right)+y\left(\begin{array}{c}
-7 \\
12 \\
1
\end{array}\right)+z\left(\begin{array}{c}
17 \\
-9 \\
-1
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) .
$$

So again we will apply our general observation. We claim

$$
S:=\left\{\left(\begin{array}{c}
5 \\
19 \\
-113
\end{array}\right),\left(\begin{array}{c}
-7 \\
12 \\
1
\end{array}\right),\left(\begin{array}{c}
17 \\
-9 \\
-1
\end{array}\right)\right\}
$$

is a basis of \mathbf{R}^{3}. To show this, by the two-out-of-three criterion, we can show it spans \mathbf{R}^{3}; in particular we can express $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$ as linear combinations of elements of S as follows:

$$
\begin{array}{r}
-\frac{3}{16108}\left(\begin{array}{c}
5 \\
19 \\
-113
\end{array}\right)+\frac{259}{4027}\left(\begin{array}{c}
-7 \\
12 \\
1
\end{array}\right)+\frac{1375}{16108}\left(\begin{array}{c}
17 \\
-9 \\
-1
\end{array}\right)=\vec{e}_{1} \\
\frac{5}{8054}\left(\begin{array}{c}
5 \\
19 \\
-113
\end{array}\right)+\frac{479}{4027}\left(\begin{array}{c}
-7 \\
12 \\
1
\end{array}\right)+\frac{393}{8054}\left(\begin{array}{c}
17 \\
-9 \\
-1
\end{array}\right)=\vec{e}_{2} \\
-\frac{141}{16108}\left(\begin{array}{c}
5 \\
19 \\
-113
\end{array}\right)+\frac{92}{4027}\left(\begin{array}{c}
-7 \\
12 \\
1
\end{array}\right)+\frac{193}{16108}\left(\begin{array}{c}
17 \\
-9 \\
-1
\end{array}\right)=\vec{e}_{3}
\end{array}
$$

(c) There are infinitely many solutions. A solution $u, v, w, x, y, z \in \mathbf{R}$ to the equation is the same thing as a solution $u, v, w, x, y, z \in \mathbf{R}$ to the following equation of vectors:

$$
u \vec{r}_{1}+v \vec{r}_{2}+w \vec{r}_{3}+x \vec{r}_{4}+y \vec{r}_{5}+z \vec{r}_{6}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) .
$$

where

$$
\begin{array}{ll}
\vec{r}_{1}:=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) & \vec{r}_{2}:=\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right) \quad \vec{r}_{3}:=\left(\begin{array}{l}
0 \\
1 \\
0 \\
2
\end{array}\right) \\
\vec{r}_{4}:=\left(\begin{array}{l}
1 \\
1 \\
2 \\
0
\end{array}\right) \quad \vec{r}_{5}:=\left(\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right) \quad \vec{r}_{6}:=\left(\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right)
\end{array}
$$

First note that $u=2, v=-1, w=0, x=1, y=0, z=0$ is one solution. Next, note that $\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}, \vec{r}_{4}, \vec{r}_{5}, \vec{r}_{6}$ must be linearly dependent in \mathbf{R}^{4}, just because the maximal size of set of linearly independent vectors in \mathbf{R}^{4} is the dimension of the space, namely, 4. But that means we can find $\alpha_{1}, \ldots, \alpha_{6} \in \mathbf{R}$ such that

$$
\alpha_{1} \vec{r}_{1}+\alpha_{2} \vec{r}_{2}+\alpha_{3} \vec{r}_{3}+\alpha_{4} \vec{r}_{4}+\alpha_{5} \vec{r}_{5}+\alpha_{6} \vec{r}_{6}=\overrightarrow{0}
$$

and so that not α_{i} all zero. But then
$\left(2+t \alpha_{1}\right) \vec{r}_{1}+\left(-1+t \alpha_{2}\right) \vec{r}_{2}+t \alpha_{3} \vec{r}_{3}+\left(1+t \alpha_{4}\right) \vec{r}_{4}+t \alpha_{5} \vec{r}_{5}+t \alpha_{6} \vec{r}_{6}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$
for all $t \in \mathbf{R}$, and these are all different because $\alpha_{i} \neq 0$ for some i, so indeed we have infinitely many solutions.
(d) There is exactly one solution. Observe that a solution $u, v, w, x, y, z \in \mathbf{R}$ to the equation is the same thing as a solution $u, v, w, x, y, z \in \mathbf{R}$ to the following equation of vectors:

$$
u \vec{r}_{6}+v \vec{r}_{5}+w \vec{r}_{4}+x \vec{r}_{3}+y \vec{r}_{2}+z \vec{r}_{1}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

where $\vec{r}_{i}=-3 \vec{e}_{i}+\sum_{j=1}^{6} \vec{e}_{j}$. Here the \vec{e}_{j} are the standard basis vectors of \mathbf{R}^{6}. As in (1) and (2) above, we will apply our general observation.

To that end, we claim that $S:=\left\{\vec{r}_{1}, \ldots, \vec{r}_{6}\right\}$ is a basis of \mathbf{R}^{6}. To show this, by the two-out-of-three criterion, we can show it spans \mathbf{R}^{6}; in particular we can express $\vec{e}_{1}, \ldots, \vec{e}_{6}$ as linear combinations of elements of S as follows:

$$
\begin{array}{r}
-\frac{2}{9} \vec{r}_{1}+\frac{1}{9} \vec{r}_{2}+\frac{1}{9} \vec{r}_{3}+\frac{1}{9} \vec{r}_{4}+\frac{1}{9} \vec{r}_{5}+\frac{1}{9} \vec{r}_{6}=\vec{e}_{1} \\
\frac{1}{9} \vec{r}_{1}-\frac{2}{9} \vec{r}_{2}+\frac{1}{9} \vec{r}_{3}+\frac{1}{9} \vec{r}_{4}+\frac{1}{9} \vec{r}_{5}+\frac{1}{9} \vec{r}_{6}=\vec{e}_{2} \\
\frac{1}{9} \vec{r}_{1}+\frac{1}{9} \vec{r}_{2}-\frac{2}{9} \vec{r}_{3}+\frac{1}{9} \vec{r}_{4}+\frac{1}{9} \vec{r}_{5}+\frac{1}{9} \vec{r}_{6}=\vec{e}_{3} \\
\frac{1}{9} \vec{r}_{1}+\frac{1}{9} \vec{r}_{2}+\frac{1}{9} \vec{r}_{3}-\frac{2}{9} \vec{r}_{4}+\frac{1}{9} \vec{r}_{5}+\frac{1}{9} \vec{r}_{6}=\vec{e}_{4} \\
\frac{1}{9} \vec{r}_{1}+\frac{1}{9} \vec{r}_{2}+\frac{1}{9} \vec{r}_{3}+\frac{1}{9} \vec{r}_{4}-\frac{2}{9} \vec{r}_{5}+\frac{1}{9} \vec{r}_{6}=\vec{e}_{5} \\
\frac{1}{9} \vec{r}_{1}+\frac{1}{9} \vec{r}_{2}+\frac{1}{9} \vec{r}_{3}+\frac{1}{9} \vec{r}_{4}+\frac{1}{9} \vec{r}_{5}-\frac{2}{9} \vec{r}_{6}=\vec{e}_{6} .
\end{array}
$$

Problem 4 What's the angle between the following vectors? Compute the projection $\pi_{\vec{a}}(\vec{b})$ in each case.
(a) $\vec{a}=\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right)$ and $\vec{b}=\left(\begin{array}{c}3 \\ 4 \\ 12\end{array}\right)$
(b) $\vec{a}=\left(\begin{array}{c}4 \\ -4 \\ 7\end{array}\right)$ and $\vec{b}=\left(\begin{array}{c}-1 \\ 4 \\ -8\end{array}\right)$
(c) $\vec{a}=\left(\begin{array}{c}169 \\ -520 \\ -561 \\ 425\end{array}\right)$ and $\vec{b}=\left(\begin{array}{c}-1 \\ 1 \\ -1 \\ 1\end{array}\right)$
(d) $\vec{a}=\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1\end{array}\right)$ and $\vec{b}=\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0\end{array}\right)$

Solution: In all cases below we use θ to denote the angle between \vec{a} and \vec{b} :
(a) We know $\cos (\theta)=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\frac{26}{\sqrt{9} \sqrt{169}}=\frac{2}{3}$. Let us use arccos to denote the unique bijective function from $[-1,1]$ to $[0, \pi]$ that satisfies $\arccos (\cos (\theta))=\theta$ for all $\theta \in[0, \pi]$. Thus $\theta=\arccos \left(\frac{2}{3}\right) \approx 48.19^{\circ}$. Then the projection $\pi_{\vec{a}}(\vec{b})$ is $\pi_{\vec{a}}(\vec{b})=\frac{|\vec{b}|}{|\vec{a}|} \cos (\theta) \vec{a}=\frac{26}{9} \vec{a}=\left(\begin{array}{c}\frac{52}{9} \\ \frac{52}{9} \\ \frac{26}{9}\end{array}\right)$.
(b) We have $\cos (\theta)=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\frac{-76}{\sqrt{81} \sqrt{81}}=\frac{-76}{81}$. Thus $\theta=\arccos \left(\frac{-76}{81}\right) \approx$ 159.8°. And the projection is $\pi_{\vec{a}}(\vec{b})=\frac{|\vec{b}|}{|\vec{a}|} \cos (\theta) \vec{a}=-\frac{76}{81} \vec{a}=\left(\begin{array}{c}\frac{304}{81} \\ \frac{-304}{81} \\ \frac{532}{81}\end{array}\right)$.
(c) We have $\cos (\theta)=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\frac{297}{\sqrt{794307} \sqrt{4}}=\frac{297}{2 \sqrt{794307}}$. Thus $\theta=\arccos \left(\frac{297}{2 \sqrt{794307}}\right) \approx$ 80.4 . And the projection is $\pi_{\vec{a}}(\vec{b})=\frac{|\vec{b}|}{|\vec{a}|} \cos (\theta) \vec{a}=\frac{297}{794307} \vec{a}=\left(\begin{array}{c}\frac{16731}{264769} \\ \frac{-5180}{264769} \\ \frac{-5539}{264769} \\ \frac{42075}{264769}\end{array}\right)$.
(d) We have $\cos (\theta)=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\frac{2}{\sqrt{4} \sqrt{4}}=\frac{1}{2}$. Thus $\theta=\arccos \left(\frac{1}{2}\right)=60^{\circ}$ (or $\frac{\pi}{3}$ radians). And the projection is $\pi_{\vec{a}}(\vec{b})=\frac{|\vec{b}|}{|\vec{a}|} \cos (\theta) \vec{a}=\frac{1}{2} \vec{a}=\left(\begin{array}{c}\frac{1}{2} \\ \frac{1}{2} \\ 0 \\ \frac{1}{2} \\ 0 \\ \frac{1}{2}\end{array}\right)$.

Problem 5 What's the length of the vector

$$
\left(\begin{array}{c}
0 \\
1 \\
2 \\
\vdots \\
23 \\
24
\end{array}\right) \in \mathbf{R}^{25} ?
$$

Solution: It can easily be proved by induction that $\sum_{i=0}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$
for all $n=0,1,2, \ldots$ Thus the length of this vector is $\sqrt{0^{2}+1^{2}+\cdots+24^{2}}=$ $\sqrt{\frac{24(25)(49)}{6}}=70$.

Problem 6 Show that any unit vector $\hat{u} \in \mathbf{R}^{n+1}$ can be written as

$$
\hat{u}=\left(\begin{array}{c}
\cos \left(\phi_{1}\right) \\
\sin \left(\phi_{1}\right) \cos \left(\phi_{2}\right) \\
\sin \left(\phi_{1}\right) \sin \left(\phi_{2}\right) \cos \left(\phi_{3}\right) \\
\vdots \\
\sin \left(\phi_{1}\right) \sin \left(\phi_{2}\right) \cdots \sin \left(\phi_{n-1}\right) \cos (\theta) \\
\sin \left(\phi_{1}\right) \sin \left(\phi_{2}\right) \cdots \sin \left(\phi_{n-1}\right) \sin (\theta)
\end{array}\right)
$$

with $\phi_{1}, \phi_{2}, \ldots, \phi_{n-1} \in[0, \pi]$ and $\theta \in[0,2 \pi)$. Draw a picture for $n=1$ and $n=2$ to illustrate.

Solution: Let $\hat{u}=\left(\begin{array}{c}u_{1} \\ u_{2} \\ \vdots \\ u_{n+1}\end{array}\right)$ be a unit vector in \mathbf{R}^{n+1}. We proceed to define $\phi_{1}, \phi_{2}, \ldots, \phi_{n-1} \in[0, \pi]$ and $\theta \in[0,2 \pi)$ so that \hat{u} is as in the statement of the problem. First let us define the ϕ_{i}. We will do so recursively. Suppose that we have already found $\phi_{1}, \ldots, \phi_{i-1} \in[0, \pi]$ so that

$$
\begin{align*}
u_{1} & =\cos \left(\phi_{1}\right) \tag{1}\\
u_{2} & =\sin \left(\phi_{1}\right) \cos \left(\phi_{2}\right) \\
& \vdots \\
u_{i-1} & =\sin \left(\phi_{1}\right) \sin \left(\phi_{2}\right) \cdots \sin \left(\phi_{i-2}\right) \cos \left(\phi_{i-1}\right)
\end{align*}
$$

We want to find a $\phi_{i} \in[0, \pi]$ so that

$$
\begin{equation*}
u_{i}=\sin \left(\phi_{1}\right) \sin \left(\phi_{2}\right) \cdots \sin \left(\phi_{i-1}\right) \cos \left(\phi_{i}\right) \tag{2}
\end{equation*}
$$

To that end, we claim that for $1 \leq k \leq i-1$ we have

$$
\begin{equation*}
\sin ^{2}\left(\phi_{1}\right) \sin ^{2}\left(\phi_{2}\right) \cdots \sin ^{2}\left(\phi_{k}\right)=1-u_{1}^{2}-u_{2}^{2}-\cdots-u_{k}^{2} \tag{3}
\end{equation*}
$$

The case $k=1$ of (3) follows from the assumption in (1) that $u_{1}=\cos \left(\phi_{1}\right)$. So suppose $k>1$ and the claim holds for $k-1$. Then

$$
\begin{aligned}
\sin ^{2}\left(\phi_{1}\right) \sin ^{2}\left(\phi_{2}\right) \cdots \sin ^{2}\left(\phi_{k}\right) & =\sin ^{2}\left(\phi_{1}\right) \sin ^{2}\left(\phi_{2}\right) \cdots \sin ^{2}\left(\phi_{k-1}\right)\left(1-\cos ^{2}\left(\phi_{k}\right)\right) \\
& =\sin ^{2}\left(\phi_{1}\right) \cdots \sin ^{2}\left(\phi_{k-1}\right)-\sin ^{2}\left(\phi_{1}\right) \cdots \sin ^{2}\left(\phi_{k-1}\right) \cos ^{2}\left(\phi_{k}\right) \\
& =1-u_{1}-u_{2}-\cdots-u_{k-1}-u_{k}
\end{aligned}
$$

where in the last line we use our inductive hypothesis and the assumption in (1) that $u_{k}=\sin ^{2}\left(\phi_{1}\right) \sin ^{2}\left(\phi_{2}\right) \cdots \sin ^{2}\left(\phi_{k-1}\right) \cos ^{2}\left(\phi_{k}\right)$. So indeed (3) holds. Now we proceed to define ϕ_{i} to satisfy (2). Note that \hat{u} being a unit vector is equivalent to $u_{1}^{2}+u_{2}^{2}+\cdots+u_{n+1}^{2}=1$. So in particular we have

$$
0 \leq 1-u_{1}^{2}-u_{2}^{2}-\cdots-u_{i-1}^{2} \leq 1 .
$$

First suppose that $1-u_{1}^{2}-u_{2}^{2}-\cdots-u_{i-1}^{2}=0$. Then note that $u_{i}=0$ because otherwise $u_{1}^{2}+u_{2}^{2}+\cdot+u_{n+1}^{2}>1$. Thus in this case we can choose any $\phi_{i} \in[0, \pi]$ and (2) will be satisfied, since by (3) we have

$$
\sin ^{2}\left(\phi_{1}\right) \cdots \sin ^{2}\left(\phi_{i}\right)=1-u_{1}^{2}-u_{2}^{2}-\cdots-u_{i-1}^{2}=0
$$

which implies

$$
\sin \left(\phi_{1}\right) \sin \left(\phi_{2}\right) \cdots \sin \left(\phi_{i}\right)=0
$$

So now let us suppose that $0<1-u_{1}^{2}-u_{2}^{2}-\cdots-u_{i-1}^{2} \leq 1$. Then note that

$$
0 \leq u_{i}^{2} \leq 1-u_{1}^{2}-u_{2}^{2}-\cdots-u_{i-1}^{2},
$$

again by using the fact that \hat{u} is a unit vector. Diving through we get

$$
0 \leq \frac{u_{i}^{2}}{1-u_{1}^{2}-u_{2}^{2}-\cdots-u_{i-1}^{2}} \leq 1
$$

and then taking square roots and using (3) we have

$$
0 \leq\left|\frac{u_{i}}{\sin \left(\phi_{1}\right) \sin \left(\phi_{2}\right) \cdots \sin \left(\phi_{i-1}\right)}\right| \leq 1 .
$$

So in this case we can define $\phi_{i}:=\arccos \left(\frac{u_{i}}{\sin \left(\phi_{1}\right) \sin \left(\phi_{2}\right) \cdots \sin \left(\phi_{i-1}\right)}\right) \in[0, \pi]$ and we will satisfy (2).

We have now successfully defined $\phi_{1}, \ldots, \phi_{n-1} \in[0, \pi]$ so that

$$
\begin{aligned}
u_{1} & =\cos \left(\phi_{1}\right) \\
u_{2} & =\sin \left(\phi_{1}\right) \cos \left(\phi_{2}\right) \\
& \vdots \\
u_{n-1} & =\sin \left(\phi_{1}\right) \sin \left(\phi_{2}\right) \cdots \sin \left(\phi_{n-2}\right) \cos \left(\phi_{n-1}\right)
\end{aligned}
$$

Moreover, the same argument used to establish (3) still applies to $i:=n-1$ and so we have

$$
\begin{equation*}
\sin ^{2}\left(\phi_{1}\right) \sin ^{2}\left(\phi_{2}\right) \cdots \sin ^{2}\left(\phi_{n-1}\right)=1-u_{1}^{2}-u_{2}^{2}-\cdots-u_{n-1}^{2} . \tag{4}
\end{equation*}
$$

We want to find $\theta \in[0,2 \pi)$ so that

$$
\begin{align*}
u_{n} & =\sin \left(\phi_{1}\right) \sin \left(\phi_{2}\right) \cdots \sin \left(\phi_{n-1}\right) \cos (\theta) \tag{5}\\
u_{n+1} & =\sin \left(\phi_{1}\right) \sin \left(\phi_{2}\right) \cdots \sin \left(\phi_{n-1}\right) \sin (\theta)
\end{align*}
$$

As before we have $0 \leq 1-u_{1}^{2}-u_{2}^{2}-\cdots-u_{n-1}^{2} \leq 1$. Suppose $1-u_{1}^{2}-u_{2}^{2}-$ $\cdots-u_{n-1}^{2}=0$. Then $u_{n}=u_{n+1}=0$ again because \hat{u} is a unit vector. In this case we can choose any $\theta \in[0,2 \pi$) and we will satisfy (5) because by (4) we have

$$
\sin ^{2}\left(\phi_{1}\right) \sin ^{2}\left(\phi_{2}\right) \cdots \sin ^{2}\left(\phi_{n-1}\right)=1-u_{1}^{2}-u_{2}^{2}-\cdots-u_{n-1}^{2}=0
$$

which implies

$$
\sin \left(\phi_{1}\right) \sin \left(\phi_{2}\right) \cdots \sin \left(\phi_{n-1}\right)=0
$$

So now suppose $0<1-u_{1}^{2}-u_{2}^{2}-\cdots-u_{n-1}^{2} \leq 1$. Then as before

$$
0 \leq\left|\frac{u_{n}}{\sin \left(\phi_{1}\right) \sin \left(\phi_{2}\right) \cdots \sin \left(\phi_{n-1}\right)}\right| \leq 1 .
$$

Let us define $\theta \in[0,2 \pi)$ by

$$
\theta:= \begin{cases}\arccos \left(\frac{u_{n}}{\sin \left(\phi_{1}\right) \sin \left(\phi_{2}\right) \cdots \sin \left(\phi_{n-1}\right)}\right) & \text { if } \frac{u_{n}}{\sin \left(\phi_{1}\right) \sin \left(\phi_{2}\right) \cdots \sin \left(\phi_{n-1}\right)} \geq 0, \\ 2 \pi-\arccos \left(\frac{u_{n}}{\sin \left(\phi_{1}\right) \sin \left(\phi_{2}\right) \cdots \sin \left(\phi_{n-1}\right)}\right) & \text { otherwise. }\end{cases}
$$

Why does this definition satisfy (5)? Well, it clearly satisfies the first equation in (5) because

$$
\begin{aligned}
\cos \left(2 \pi-\arccos \left(\frac{u_{i}}{\sin \left(\phi_{1}\right) \sin \left(\phi_{2}\right) \cdots \sin \left(\phi_{i-1}\right)}\right)\right) & =\cos \left(\arccos \left(\frac{u_{i}}{\sin \left(\phi_{1}\right) \sin \left(\phi_{2}\right) \cdots \sin \left(\phi_{i-1}\right)}\right)\right) \\
& =\frac{u_{i}}{\sin \left(\phi_{1}\right) \sin \left(\phi_{2}\right) \cdots \sin \left(\phi_{i-1}\right)}
\end{aligned}
$$

because cos is even and has period 2π. And as to the second equation in (5) we can check that

$$
\begin{aligned}
\sin ^{2}\left(\phi_{1}\right) \sin ^{2}\left(\phi_{2}\right) \cdots \sin ^{2}\left(\phi_{n-1}\right) \sin ^{2}(\theta) & =\sin ^{2}\left(\phi_{1}\right) \sin ^{2}\left(\phi_{2}\right) \cdots \sin ^{2}\left(\phi_{n-1}\right)\left(1-\cos ^{2}(\theta)\right) \\
& =\sin ^{2}\left(\phi_{1}\right) \cdots \sin ^{2}\left(\phi_{n-1}\right)-\sin ^{2}\left(\phi_{1}\right) \cdots \sin ^{2}\left(\phi_{n-1}\right) \cos ^{2}(\theta) \\
& =1-u_{1}^{2}-u_{2}^{2}-\cdots-u_{n-1}^{2}-u_{n}^{2} \\
& =u_{n+1}^{2}
\end{aligned}
$$

because $1=\sum_{i=1}^{n+1} u_{i}^{2}$. So $\sin \left(\phi_{1}\right) \sin \left(\phi_{2}\right) \cdots \sin \left(\phi_{n-1}\right) \sin (\theta)= \pm u_{n+1}$, and the two cases in our definition θ deal with this choice of sign.

The case $n=1$ is the well-known polar coordinates:

The case $n=2$ is spherical coordinates:

Problem 7 Suppose $\hat{u}_{1}, \hat{u}_{2}, \ldots, \hat{u}_{k} \in \mathbf{R}^{n}$ is a collection of vectors such that

$$
\hat{u}_{i} \cdot \hat{u}_{j}= \begin{cases}0 & \text { if } i \neq j \\ 1 & \text { if } i=j .\end{cases}
$$

Show that $\hat{u}_{1}, \hat{u}_{2}, \ldots, \hat{u}_{k}$ are linearly independent.
Solution: Let $\hat{u}_{1}, \hat{u}_{2}, \ldots, \hat{u}_{k} \in \mathbf{R}^{n}$ satisfy the above property. Suppose that

$$
\alpha_{1} \hat{u}_{1}+\alpha_{2} \hat{u}_{2}+\cdots+\alpha_{k} \hat{u}_{k}=\overrightarrow{0}
$$

for $\alpha_{1}, \ldots, \alpha_{k} \in \mathbf{R}$. By taking the dot product of the above equation with \hat{u}_{i}, we see that $\alpha_{i}=0$. Thus for all $i, \alpha_{i}=0$, which means our solution must've been trivial. So indeed the vectors are linearly independent.

