18.06 Professor Strang Quiz 3 - Solutions May 7th, 2012

Grading

Your PRINTED name is: __ 1
2
3
Please circle your recitation:

| | | | | |
| :---: | :---: | :---: | :--- | :---: | :---: |
| r01 | T 11 | 4-159 | Ailsa Keating | ailsa |
| r02 | T 11 | $36-153$ | Rune Haugseng | haugseng |
| r03 | T 12 | 4-159 | Jennifer Park | jmypark |
| r04 | T 12 | 36-153 | Rune Haugseng | haugseng |
| r05 | T 1 | 4-153 | Dimiter Ostrev | ostrev |
| r06 | T 1 | 4-159 | Uhi Rinn Suh | ursuh |
| r07 | T 1 | $66-144$ | Ailsa Keating | ailsa |
| r08 | T 2 | $66-144$ | Niels Martin Moller | moller |
| r09 | T 2 | 4-153 | Dimiter Ostrev | ostrev |
| r10 | ESG | | Gabrielle Stoy | gstoy |
| | | | | |

1 (33 pts.)

Suppose an $n \times n$ matrix A has n independent eigenvectors x_{1}, \ldots, x_{n}. Then you could write the solution to $\frac{d u}{d t}=A u$ in three ways:

$$
\begin{aligned}
& u(t)=e^{A t} u(0), \quad \text { or } \\
& u(t)=S e^{\Lambda t} S^{-1} u(0), \quad \text { or } \\
& u(t)=c_{1} e^{\lambda_{1} t} x_{1}+\ldots+c_{n} e^{\lambda_{n} t} x_{n} .
\end{aligned}
$$

Here, $S=\left[x_{1}\left|x_{2}\right| \ldots \mid x_{n}\right]$.
(a) From the definition of the exponential of a matrix, show why $e^{A t}$ is the same as $S e^{\Lambda t} S^{-1}$. Solution. Recall that $A=S \Lambda S^{-1}$, and $A^{k} t^{k}=S \Lambda^{k} t^{k} S^{-1}$. Then, definition of the exponential:

$$
\exp (A t)=\sum_{k=0}^{\infty} \frac{A^{k} t^{k}}{k!}=S\left(\sum_{k=0}^{\infty} \frac{\Lambda^{k} t^{k}}{k!}\right) S^{-1}=S e^{\Lambda t} S^{-1}
$$

(b) How do you find c_{1}, \ldots, c_{n} from $u(0)$ and S ?

Solution. Since $e^{0}=1$, we see that

$$
u(0)=c_{1} x_{1}+\ldots+c_{n} x_{n}=S\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]
$$

where we used the definition of the matrix product. Thus the answer is:

$$
\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]=S^{-1} u(0) .
$$

(c) For this specific equation, write $u(t)$ in any one of the (added: latter two of the) three forms, using numbers not symbols: You can choose which form.

$$
\frac{d u}{d t}=\left[\begin{array}{cc}
1 & 2 \\
-1 & 4
\end{array}\right] u, \quad \text { starting from } \quad u(0)=\left[\begin{array}{l}
4 \\
3
\end{array}\right]
$$

Solution. We diagonalize A and get:

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{rr}
1 & -1 \\
-1 & 2
\end{array}\right] .
$$

Thus $c=\left[\begin{array}{l}1 \\ 2\end{array}\right]$, so for the second form

$$
u(t)=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{rr}
1 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
4 \\
3
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
e^{2 t} & 0 \\
0 & e^{3 t}
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right],
$$

while in the third form:

$$
u(t)=e^{2 t}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+2 e^{3 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

2 (30 pts.)

This question is about the real matrix

$$
A=\left[\begin{array}{cc}
1 & c \\
1 & -1
\end{array}\right], \quad \text { for } \quad c \in \mathbb{R}
$$

(a) - Find the eigenvalues of A, depending on c.

- For which values of c does A have real eigenvalues?

Solution. Since $0=\operatorname{tr} A=\lambda_{1}+\lambda_{2}$, we see that $\lambda_{2}=-\lambda_{1}$.

Also, $-1-c=\operatorname{det} A=-\lambda_{1}^{2}$. Thus,

$$
\lambda= \pm \sqrt{1+c}
$$

Therefore,
the eigenvalues are real precisely when $c \geq-1$.
(b) - For one particular value of c, convince me that A is similar to both the matrix

$$
B=\left[\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right]
$$

and to the matrix

$$
C=\left[\begin{array}{cc}
2 & 2 \\
0 & -2
\end{array}\right]
$$

- Don't forget to say which value c this happens for.

Solution. If two matrices are similar, then they do have the same eigenvalues (those are $2,-2$ for both B and C). Here we must therefore have $0=\operatorname{tr} A$ and $-1-c=\operatorname{det} A=$ -4 . We see that this happens precisely when $c=3$, where we check that indeed the eigenvalues are 2, -2 . However, this does not guarantee that they are similar - and hence is not convincing.

Convincing: The eigenvalues $2,-2$ are different, so both A, B and C are diagonalizable, with the same diagonal matrix (for example to $\Lambda=B!$). Therefore A, B and C are all similar when $c=3$.
(c) For one particular value of c, convince me that A cannot be diagonalized. It is not similar to a diagonal matrix Λ, when c has that value.

- Which value c ?
- Why not?

Solution. As we saw above, $\operatorname{tr} A=0$, so regardless of c the eigenvalues come in pairs $\lambda_{2}=-\lambda_{1}$. This means that whenever $\lambda_{1} \neq 0$, we have two different eigenvalues, and hence A is diagonalizable (not what we're after).

Thus we need $\lambda_{1}=\lambda_{2}=0$, a repeated eigenvalue, which happens when $c=-1$ (so $\operatorname{det} A=0)$ as the only suspect - does it work?
Convincing: For $c=-1$, we have $N(A-0 \cdot I)=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$

With only a 1-dimensional space of eigenvectors for the matrix, we are convinced that A is not diagonalizable for $c=-1$.

3 (37 pts.)

(a) Suppose A is an $n \times n$ symmetric matrix with eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$.

- What is the largest number real number c that can be subtracted from the diagonal entries of A, so that $A-c I$ is positive semidefinite?
- Why?

Solution. - We first realize that: If A is symmetric, then $A-c I$ is also symmetric, since in general $(A+B)^{T}=A^{T}+B^{T}$ (simple, but very important to check!).

- Then we realize that the eigenvalues of $A-c I$ are $\lambda_{1}-c \leq \lambda_{2}-c \leq \ldots \leq \lambda_{n}-c$. Therefore:
$c=\lambda_{1}$ is the largest that can ensure positive semidefiniteness (and it does).
(b) Suppose B is a matrix with independent columns.
- What is the nullspace $N(B)$?
- Show that $A=B^{T} B$ is positive definite. Start by saying what that means about $x^{T} A x$. Solution. - Then $B x=0$ only has the zero solution, so $N(B)=\{0\}$.
- Again, we start by observing that $A^{T}=A$ is symmetric. Then we recall what positive definite means (the "energy" test):

$$
x^{T} A x>0 \quad \text { whenever } \quad x \neq 0
$$

Thus, we see here (by definition the inner product property of the transpose of a matrix):

$$
x^{T} A x=x^{T}\left(B^{T}(B x)\right)=(B x)^{T}(B x)=\|B x\|^{2} \geq 0
$$

So $A=B^{T} B$ is positive semidefinite. But finally, the equality $\|B x\|^{2}=0$, only happens when $B x=0$ which by $N(B)=\{0\}$ means $x=0$.
(c) This matrix A has rank $r=1$:

$$
A=\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right]
$$

- Find its largest singular value σ from $A^{T} A$.
- From its column space and row space, respectively, find unit vectors u and v so that

$$
A v=\sigma u, \quad \text { and } \quad A=u \sigma v^{T}
$$

- From the nullspaces of A and A^{T} put numbers into the full SVD (Singular Value Decomposition) of A :

$$
A=\left[\begin{array}{cc}
\mid & \mid \\
u & \cdots \\
\mid & \mid
\end{array}\right]\left[\begin{array}{cc}
\sigma & 0 \\
0 & \ldots
\end{array}\right]\left[\begin{array}{cc}
\mid & \mid \\
v & \ldots \\
\mid & \mid
\end{array}\right]^{T}
$$

Solution. We compute:

$$
A^{T} A=\left[\begin{array}{cc}
5 & 5 \\
5 & 5
\end{array}\right]
$$

Thus the two eigenvalues are $\lambda_{1}=0$ and $\lambda_{2}=10$, and $\sigma=\sqrt{10}$. For v, we find a vector in $N\left(A^{T} A-10 I\right)$, and normalize to unit length:

$$
v=\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right] .
$$

Then we find u using

$$
u=\frac{A v}{\sigma}=\left[\begin{array}{l}
1 / \sqrt{5} \\
2 / \sqrt{5}
\end{array}\right]
$$

Since we have the orthogonal sums of subspaces $\mathbb{R}^{2}=\mathbb{R}^{m}=c(A) \oplus N\left(A^{T}\right)$ and also $\mathbb{R}^{2}=\mathbb{R}^{n}=c\left(A^{T}\right) \oplus N(A)$, we need to find one unit vector from each of $N(A)$ and $N\left(A^{T}\right)$ and augment to v and u, respectively:

$$
\begin{aligned}
& v_{2}=\left[\begin{array}{c}
1 \sqrt{2} \\
-1 \sqrt{2}
\end{array}\right] \in N(A) \\
& u_{2}=\left[\begin{array}{c}
-2 / \sqrt{5} \\
1 / \sqrt{5}
\end{array}\right] \in N\left(A^{T}\right)
\end{aligned}
$$

Thus, we finally see the full SVD:

$$
A=U \Sigma V^{T}=\left[\begin{array}{cc}
1 / \sqrt{5} & -2 \sqrt{5} \\
2 / \sqrt{5} & 1 / \sqrt{5}
\end{array}\right]\left[\begin{array}{cc}
\sqrt{10} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]^{T}
$$

We remember, as a final check, to verify that the square matrices U and V both contain orthonormal bases of \mathbb{R}^{2} as they should:

$$
\begin{aligned}
& U U^{T}=I_{2}, \\
& V V^{T}=I_{2} .
\end{aligned}
$$

