\qquad

Please circle your recitation:

r01	T 11	$4-159$	Ailsa Keating	ailsa
r02	T 11	$36-153$	Rune Haugseng	haugseng
r03	T 12	$4-159$	Jennifer Park	jmypark
r04	T 12	$36-153$	Rune Haugseng	haugseng
r05	T 1	$4-153$	Dimiter Ostrev	ostrev
r06	T 1	$4-159$	Uhi Rinn Suh	ursuh
r07	T 1	$66-144$	Ailsa Keating	ailsa
r08	T 2	$66-144$	Niels Martin Moller	moller
r09	T 2	$4-153$	Dimiter Ostrev	ostrev
r10	ESG		Gabrielle Stoy	gstoy

1 (33 pts.)

Suppose an $n \times n$ matrix A has n independent eigenvectors x_{1}, \ldots, x_{n}. Then you could write the solution to $\frac{d u}{d t}=A u$ in three ways:

$$
\begin{aligned}
& u(t)=e^{A t} u(0), \quad \text { or } \\
& u(t)=S e^{\Lambda t} S^{-1} u(0), \quad \text { or } \\
& u(t)=c_{1} e^{\lambda_{1} t} x_{1}+\ldots+c_{n} e^{\lambda_{n} t} x_{n} .
\end{aligned}
$$

Here, $S=\left[x_{1}\left|x_{2}\right| \ldots \mid x_{n}\right]$.
(a) From the definition of the exponential of a matrix, show why $e^{A t}$ is the same as $S e^{\Lambda t} S^{-1}$.
(b) How do you find c_{1}, \ldots, c_{n} from $u(0)$ and S ?
(c) For this specific equation, write $u(t)$ in any one of the three forms, using numbers not symbols: You can choose which form.

$$
\frac{d u}{d t}=\left[\begin{array}{cc}
1 & 2 \\
-1 & 4
\end{array}\right] u, \quad \text { starting from } \quad u(0)=\left[\begin{array}{l}
4 \\
3
\end{array}\right] .
$$

This page intentionally blank.

2 (30 pts.)

This question is about the real matrix

$$
A=\left[\begin{array}{cc}
1 & c \\
1 & -1
\end{array}\right], \quad \text { for } \quad c \in \mathbb{R}
$$

(a) - Find the eigenvalues of A, depending on c.

- For which values of c does A have real eigenvalues?
(b) - For one particular value of c, convince me that A is similar to both the matrix

$$
B=\left[\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right]
$$

and to the matrix

$$
C=\left[\begin{array}{cc}
2 & 2 \\
0 & -2
\end{array}\right]
$$

- Don't forget to say which value c this happens for.
(c) For one particular value of c, convince me that A cannot be diagonalized. It is not similar to a diagonal matrix Λ, when c has that value.
- Which value c?
- Why not?

This page intentionally blank.

3 (37 pts.)

(a) Suppose A is an $n \times n$ symmetric matrix with eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$.

- What is the largest number real number c that can be subtracted from the diagonal entries of A, so that $A-c I$ is positive semidefinite?
- Why?
(b) Suppose B is a matrix with independent columns.
- What is the nullspace $N(B)$?
- Show that $A=B^{T} B$ is positive definite. Start by saying what that means about $x^{T} A x$.
(c) This matrix A has rank $r=1$:

$$
A=\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right]
$$

- Find its largest singular value σ from $A^{T} A$.
- From its column space and row space, respectively, find unit vectors u and v so that

$$
A v=\sigma u, \quad \text { and } \quad A=u \sigma v^{T} .
$$

- From the nullspaces of A and A^{T} put numbers into the full SVD (Singular Value Decomposition) of A :

$$
A=\left[\begin{array}{cc}
\mid & \mid \\
u & \ldots \\
\mid & \mid
\end{array}\right]\left[\begin{array}{cc}
\sigma & 0 \\
0 & \ldots
\end{array}\right]\left[\begin{array}{cc}
\mid & \mid \\
v & \ldots \\
\mid & \mid
\end{array}\right]^{T} .
$$

This page intentionally blank.

