Grading
Your PRINTED name is:12

Please circle your recitation:

r01	T 11	$4-159$	Ailsa Keating	ailsa
r02	T 11	$36-153$	Rune Haugseng	haugseng
r03	T 12	$4-159$	Jennifer Park	jmypark
r04	T 12	$36-153$	Rune Haugseng	haugseng
r05	T 1	$4-153$	Dimiter Ostrev	ostrev
r06	T 1	$4-159$	Uhi Rinn Suh	ursuh
r07	T 1	$66-144$	Ailsa Keating	ailsa
r08	T 2	$66-144$	Niels Martin Moller	moller
r09	T 2	$4-153$	Dimiter Ostrev	ostrev
r10	ESG		Gabrielle Stoy	gstoy

1 (40 pts.)

(a) Find the projection p of the vector b onto the plane of a_{1} and a_{2}, when

$$
b=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right], \quad a_{1}=\left[\begin{array}{l}
1 \\
7 \\
1 \\
7
\end{array}\right], \quad a_{2}=\left[\begin{array}{r}
-1 \\
7 \\
1 \\
-7
\end{array}\right]
$$

(b) What projection matrix P will produce the projection $p=P b$ for every vector b in \mathbb{R}^{4} ?
(c) What is the determinant of $I-P$? Explain your answer.
(d) What are all nonzero eigenvectors of P with eigenvalue $\lambda=1$?

How is the number of independent eigenvectors with $\lambda=0$ of an $n \times n$ square matrix A connected to the rank of A ?
(You could answer (c) and (d) even if you don't answer (b).)

This page intentionally blank.

2 (30 pts.)

(a) Suppose the matrix A factors into $A=P L U$ with a permutation matrix P, and 1 's on the diagonal of L (lower triangular) and pivots d_{1}, \ldots, d_{n} on the diagonal of U (upper triangular).

What is the determinant of A ?
EXPLAIN WHAT RULES YOU ARE USING.
(b) Suppose the first row of a new matrix A consists of the numbers $1,2,3,4$. Suppose the cofactors $C_{i j}$ of that first row are the numbers $2,2,2,2$.
(Cofactors already include the \pm signs.)

Which entries of A^{-1} does this tell you and what are those entries?
(c) What is the determinant of the matrix $M(x)$? For which values of x is the determinant equal to zero?

$$
M(x)=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 2 & x \\
1 & 1 & 4 & x^{2} \\
1 & -1 & 8 & x^{3}
\end{array}\right]
$$

This page intentionally blank.

3 (30 pts.)

(a) Starting from independent vectors a_{1} and a_{2}, use Gram-Schmidt to find formulas for two orthonormal vectors q_{1} and q_{2} (combinations of a_{1} and a_{2}):
$q_{1}=$

$$
q_{2}=
$$

(b) The connection between the matrices $A=\left[\begin{array}{ll}a_{1} & a_{2}\end{array}\right]$ and $Q=\left[\begin{array}{ll}q_{1} & q_{2}\end{array}\right]$ is often written $A=Q R$. From your answer to Part (a), what are the entries in this matrix R ?
(c) The least squares solution \widehat{x} to the equation $A x=b$ comes from solving what equation? If $A=Q R$ as above, show that $R \widehat{x}=Q^{T} b$.

This page intentionally blank.

