Please PRINT your name \qquad

Please Circle your Recitation:
3.
4.

r1	T	11	$4-159$	Ailsa Keating
r2	T	11	$36-153$	Rune Haugseng
r3	T	12	$4-159$	Jennifer Park
r 4	T	12	$36-153$	Rune Haugseng
r 5	T	1	$4-153$	Dimiter Ostrev
r 6	T	1	$4-159$	Uhi Rinn Suh
r 7	T	1	$66-144$	Ailsa Keating
r 8	T	2	$66-144$	Niels Martin Moller
r9	T	2	$4-153$	Dimiter Ostrev
r10	ESG			Gabrielle Stoy

1. (36 pts.) Suppose the 4 by 4 matrix A (with 2 by 2 blocks) is already reduced to its rref form

$$
A=\left[\begin{array}{cc}
I & 3 I \\
0 & 0
\end{array}\right]
$$

(a) Find a basis for the column space $C(A)$.
(b) Describe all possible bases for $C(A)$.
(c) Find a basis (special solutions are good) for the nullspace $N(A)$.
(d) Find the complete solution x to the 4 by 4 system

$$
A x=\left[\begin{array}{l}
5 \\
4 \\
0 \\
0
\end{array}\right]
$$

Solution.

(a) The column space is spanned by the vectors $(1,0,0,0),(0,1,0,0),(3,0,0,0),(0,3,0,0)$. We then put them in a matrix and do a Gaussian elimination to find independent vectors. This tells us that the basis for the column space is $\{(1,0,0,0),(0,1,0,0)\}$
(b) The column space can be described by

$$
C(A)=\{(x, y, 0,0) \mid x, y \in \mathbb{R}\}
$$

so the basis of $C(A)$ is the set of any two independent vectors $\left(x_{1}, x_{2}, 0,0\right)$ and $\left(x_{3}, x_{4}, 0,0\right)$. This means that the matrix

$$
A=\left(\begin{array}{ll}
x_{1} & x_{3} \\
x_{2} & x_{4}
\end{array}\right)
$$

has full rank (in other words $x_{1} x_{4}-x_{2} x_{3} \neq 0$ must hold).
(c) We observe that $(3,0,-1,0)$ and $(0,3,0,-1)$ are two independent vectors belonging to the null space. Since the column space has dimension 2, the null space has dimension $4-2=2$, so any basis of $N(A)$ has two elements. Hence, $\{(3,0,-1,0),(0,3,0,-1)\}$ is a basis for $N(A)$.
(d) We start by looking for $x_{\text {particular }}$ via elimination. Note that the matrix is already in a reduced row echelon form:

$$
\left(\begin{array}{llll|l}
1 & 0 & 3 & 0 & 5 \\
0 & 1 & 0 & 3 & 4 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

So $x_{\text {particular }}=(5,4,0,0)$. Then the complete solution is given by

$$
\begin{aligned}
x & =x_{\text {particular }}+x_{\text {nullspace }} \\
& =(5,4,0,0)+(3 a, 3 b,-a,-b) \\
& =(5+3 a, 4+3 b,-a,-b)
\end{aligned}
$$

for any $a, b \in \mathbb{R}$.
2. (16 pts.) Suppose the matrix A is m by n of rank r, and the matrix B is M by N of rank R. Suppose the column space $C(A)$ is contained in (possibly equal to) the column space $C(B)$. (This means that every vector in $C(A)$ is also in $C(B)$.) What relations must hold between m and M, n and N, and r and R ?

It might be good to write down an example of A and B where all the columns are different. Solution. The column space of A is contained in \mathbb{R}^{m}, and the column space of B is contained in \mathbb{R}^{M}. If $C(A) \subseteq C(B)$, this means they are contained in the same Euclidean space, so $M=m$. The dimension of the column space is the rank of the matrix, so if $C(A) \subseteq C(B)$, this means $\operatorname{dim} C(A) \leq \operatorname{dim} C(B)$, hence $r \leq R$. There are no relations between N and $n ; n=N$ if $A=B, n \leq N$ if $B=[A A]$, and $n \geq N$ if $A=[B B]$.
3. (a) (16 pts.) Suppose three matrices satisfy $A B=C$. If the columns of B are dependent, show that the columns of C are dependent.
(b) (12 pts.) If A is 5 by 3 and B is 3 by 5 , show using part (a) or otherwise that $A B=I$ is impossible.

Solution. (a) The columns of B being dependent means by definition that there is a vector $\mathbf{x} \neq 0$ such that $B \mathbf{x}=0$. But then we also have

$$
C \mathbf{x}=(A B) \mathbf{x}=A(B \mathbf{x})=A(\mathbf{0})=\mathbf{0},
$$

which means that the same $\mathbf{x} \neq 0$ works to show that the columns of C are dependent.
(b) The columns of B are dependent, since these are five vectors in \mathbb{R}^{3}, and $5>3$. Thus, by part (a), the columns of $A B$ must be dependent. However, columns of I are independent, so $A B$ can never equal I. [Note: Switching the order matters here. One can indeed find a 3×5 matrix A , and a 5×3 matrix B such that $A B=I$ is the 3×3 identity - hence any "proof" that is insensitive to the order of A and B must be flawed].
4. (20 pts.) Apply row elimination to reduce this invertible matrix from A to I. Then write A^{-1} as a product of three (or more) simple matrices coming from that elimination. Multiply these matrices to find A^{-1}.

$$
A=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
4 & 0 & 1
\end{array}\right]
$$

Solution. Swapping rows 1 and 2 corresponds to

$$
P:=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Subtracting 4 times row 1 from row 3 corresponds to

$$
E_{31}:=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-4 & 0 & 1
\end{array}\right)
$$

Subtracting row 3 from row 2 corresponds to

$$
E_{23}:=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right)
$$

Putting them together, we get

$$
E_{23} E_{31} P A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-4 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) A=I
$$

Hence, $A^{-1}=E_{23} E_{31} P=\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & 4 & -1 \\ 0 & -4 & 1\end{array}\right)$.

