18.06 Quiz 1

Please PRINT your name						1.
Please Circle your Recitation:						2. 3.
r1	Т	11	4-159	Ailsa Keating		4.
r2	Т	11	36 - 153	Rune Haugseng		
r3	Т	12	4-159	Jennifer Park		
r4	Т	12	36 - 153	Rune Haugseng		
r5	Т	1	4-153	Dimiter Ostrev		
r6	Т	1	4-159	Uhi Rinn Suh		
r7	Т	1	66 - 144	Ailsa Keating		
r8	Т	2	66 - 144	Niels Martin Moller		
r9	Т	2	4-153	Dimiter Ostrev		
r10	ESG			Gabrielle Stoy		

1. (36 pts.) Suppose the 4 by 4 matrix A (with 2 by 2 blocks) is already reduced to its rref form

$$A = \left[\begin{array}{cc} I & 3I \\ 0 & 0 \end{array} \right].$$

- (a) Find a basis for the column space C(A).
- (b) Describe all possible bases for C(A).
- (c) Find a basis (special solutions are good) for the nullspace N(A).
- (d) Find the complete solution x to the 4 by 4 system

$$Ax = \begin{bmatrix} 5\\4\\0\\0 \end{bmatrix}.$$

2. (16 pts.) Suppose the matrix A is m by n of rank r, and the matrix B is M by N of rank R. Suppose the column space C(A) is contained in (possibly equal to) the column space C(B). (This means that every vector in C(A) is also in C(B).) What relations must hold between m and M, n and N, and r and R?

It might be good to write down an example of A and B where all the columns are different.

3. (a) (16 pts.) Suppose three matrices satisfy AB = C. If the columns of B are dependent, show that the columns of C are dependent.

(b) (12 pts.) If A is 5 by 3 and B is 3 by 5, show using part (a) or otherwise that AB = I is impossible.

4. (20 pts.) Apply row elimination to reduce this invertible matrix from A to I. Then write A⁻¹ as a product of three (or more) simple matrices coming from that elimination. Multiply these matrices to find A⁻¹.

$$A = \left[\begin{array}{rrrr} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 4 & 0 & 1 \end{array} \right].$$