\qquad 1.
2.
3.
4.

r1	T	11	$4-159$	Ailsa Keating
r2	T	11	$36-153$	Rune Haugseng
r3	T	12	$4-159$	Jennifer Park
r4	T	12	$36-153$	Rune Haugseng
r5	T	1	$4-153$	Dimiter Ostrev
r6	T	1	$4-159$	Uhi Rinn Suh
r7	T	1	$66-144$	Ailsa Keating
r8	T	2	$66-144$	Niels Martin Moller
r9	T	2	$4-153$	Dimiter Ostrev
r10	ESG			Gabrielle Stoy

1. ($\mathbf{3 6} \mathbf{~ p t s .) ~ S u p p o s e ~ t h e ~} 4$ by 4 matrix A (with 2 by 2 blocks) is already reduced to its rref form

$$
A=\left[\begin{array}{cc}
I & 3 I \\
0 & 0
\end{array}\right]
$$

(a) Find a basis for the column space $C(A)$.
(b) Describe all possible bases for $C(A)$.
(c) Find a basis (special solutions are good) for the nullspace $N(A)$.
(d) Find the complete solution x to the 4 by 4 system

$$
A x=\left[\begin{array}{l}
5 \\
4 \\
0 \\
0
\end{array}\right]
$$

2. (16 pts .) Suppose the matrix A is m by n of rank r, and the matrix B is M by N of rank R. Suppose the column space $C(A)$ is contained in (possibly equal to) the column space $C(B)$. (This means that every vector in $C(A)$ is also in $C(B)$.) What relations must hold between m and M, n and N, and r and R ?

It might be good to write down an example of A and B where all the columns are different.
3. (a) (16 pts.) Suppose three matrices satisfy $A B=C$. If the columns of B are dependent, show that the columns of C are dependent.
(b) (12 pts.) If A is 5 by 3 and B is 3 by 5 , show using part (a) or otherwise that $A B=I$ is impossible.
4. (20 pts.) Apply row elimination to reduce this invertible matrix from A to I. Then write A^{-1} as a product of three (or more) simple matrices coming from that elimination. Multiply these matrices to find A^{-1}.

$$
A=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
4 & 0 & 1
\end{array}\right]
$$

