18.06 Spring 2012 - Problem Set 7

This problem set is due Thursday, April 19th, 2012 at 4pm (hand in to Room 2-106). The textbook problems are out of the 4th edition. For computational problems, please include a printout of the code with the problem set (for MATLAB in particular, diary ('filename') will start a transcript session, diary off will end one.)

Every problem is worth 10 points.

1. Do Problem 2 from Section 8.3.

Solution. Since $\left[\begin{array}{c}0.6 \\ 0.4\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ are the eigenvector vectors for the eigenvalues 1 and 0.75 , respectively,

$$
S=\left[\begin{array}{cc}
0.6 & -1 \\
0.4 & 1
\end{array}\right]
$$

A^{k} approches to

$$
S\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] S^{-1}=\left[\begin{array}{ll}
0.6 & 0.6 \\
0.4 & 0.4
\end{array}\right]
$$

2. Do Problem 7 from Section 8.3 (do also the "challenge problem" part).

Solution. The eigenvalues are 1 and 0.5 , and the eigenvectors are

$$
\left[\begin{array}{l}
0.6 \\
0.4
\end{array}\right] \text { and }\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Since

$$
A^{k}=S\left[\begin{array}{cc}
1 & 0 \\
0 & 0.5
\end{array}\right]^{k} S^{-1}
$$

for

$$
S=\left[\begin{array}{cc}
0.6 & 1 \\
0.4 & -1
\end{array}\right]
$$

$A^{\infty}=S\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] S^{-1}=\left[\begin{array}{cc}0.6 & 0.6 \\ 0.4 & 0.4\end{array}\right]$.
Challenge problem Let $A=\left[\begin{array}{cc}a & b \\ 1-a & 1-b\end{array}\right], 0 \leq a, b \leq 1$, be a Markov Matrix with steady state $\left[\begin{array}{l}0.6 \\ 0.4\end{array}\right]$. Then

$$
A\left[\begin{array}{l}
0.6 \\
0.4
\end{array}\right]=\left[\begin{array}{l}
0.6 \\
0.4
\end{array}\right] .
$$

Hence $0.6 a+0.4 b=0.6$. In other words,

$$
A=\left[\begin{array}{ll}
0.6+0.4 x & 0.4-0.4 x \\
0.6-0.6 x & 0.4+0.6 x
\end{array}\right]
$$

for some $-\frac{2}{3} \leq x \leq 1$.
3. Do Problem 9 from Section 8.3.

Solution. If every entry of A is nonnegative, every entry of A^{2} is also nonnegative. Since, for any $j=1, \cdots, n, \sum_{i}(A)_{i j}=1$,

$$
\sum_{i}\left(A^{2}\right)_{i j}=\sum_{i, k} a_{i k} a_{k j}=\sum_{k} \sum_{i} a_{i k} a_{k j}=\left(\sum_{k}\left(\sum_{i} a_{i k}\right) a_{k j}\right)=\sum_{k} a_{k j}=1
$$

4. Do Problem 12 from Section 8.3.

Solution. The eigenvalues are $\lambda_{1}=0$ and $\lambda_{2}=-0.5$. We have a steady state for the Markov matrix A. For the steady state $v,(A-I) v=0=0 v$. So $A-I$ have $\lambda=0$. If $u_{t}=e^{\lambda_{1} t} c_{1} x_{1}+e^{\lambda_{2} t} c_{2} x_{2}$ for the initial value $u_{0}=c_{1} x_{1}+c_{2} x_{2}, u_{t}$ converges to $c_{1} x_{1}$ as $t \rightarrow \infty$.
5. Do Problem 4 from Section 6.3.

Solution. $v+w$ is constant if and only if $\frac{d(v+w)}{d t}=0$.

$$
\frac{d(v+w)}{d t}=\frac{d v}{d t}+\frac{d w}{d t}=(w-v)+(v-w)=0
$$

so $v+w$ is constant.
Let $u=\left[\begin{array}{c}v \\ w\end{array}\right]$. Then

$$
\frac{d u}{d t}=\left[\begin{array}{c}
\frac{d v}{d t} \\
\frac{d w}{d t}
\end{array}\right]=\left[\begin{array}{l}
w-v \\
v-w
\end{array}\right]=\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
v \\
w
\end{array}\right] .
$$

The eigenvalue of $A=\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right]$ is given by solving $\operatorname{det}(A-\lambda I)=0 . \operatorname{det}(A-\lambda I)=$ $(-1-\lambda)^{2}-1=1+2 \lambda+\lambda^{2}-1=\lambda(\lambda+2)$ so the eigenvalues are $\lambda_{1}=0, \lambda_{2}=-2$. We then observe that the corresponding eigenvectors are $x_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $x_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$, respectively.

Then the pure exponential solutions are given by

$$
\begin{aligned}
& u_{1}(t)=e^{\lambda_{1} t} x_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& u_{2}(t)=e^{\lambda_{2} t} x_{2}=e^{-2 t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
\end{aligned}
$$

So the complete solutions are given by

$$
u(t)=C\left[\begin{array}{l}
1 \\
1
\end{array}\right]+D e^{-2 t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
C+D e^{-2 t} \\
C-D e^{-2 t}
\end{array}\right] .
$$

From the initial condition that $u(0)=\left[\begin{array}{c}v(0) \\ w(0)\end{array}\right]=\left[\begin{array}{l}30 \\ 10\end{array}\right]$, we get $C=20, D=10$.
That is,

$$
\begin{aligned}
v(t) & =20+10 e^{-2 t} \\
w(t) & =20-10 e^{-2 t}
\end{aligned}
$$

So $v(1)=20+10 e^{-2}, w(1)=20-10 e^{-2}, v(\infty)=w(\infty)=20$.

6. Do Problem 5 from Section 6.3.

Solution. Now we have

$$
\frac{d u}{d t}=-A u=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] u .
$$

The eigenvalues of $-A$ are given by -1 times the eigenvalues of A, so now we have $\lambda_{1}=0, \lambda_{2}=2$. The corresponding eigenvectors are the same as those of A, namely $x_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $x_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
Then the pure exponential solutions are given by

$$
\begin{aligned}
& u_{1}(t)=e^{\lambda_{1} t} x_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& u_{2}(t)=e^{\lambda_{2} t} x_{2}=e^{2 t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
\end{aligned}
$$

So the complete solutions are given by

$$
u(t)=C\left[\begin{array}{l}
1 \\
1
\end{array}\right]+D e^{2 t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
C+D e^{2 t} \\
C-D e^{2 t}
\end{array}\right]
$$

From the initial conditions $u(0)=\left[\begin{array}{c}v(0) \\ w(0)\end{array}\right]=\left[\begin{array}{l}30 \\ 10\end{array}\right]$, we get $C=20, D=10$, and $v(t)=20+10 e^{2 t}$. So as $t \rightarrow \infty, v \rightarrow \infty$.
7. Do Problem 12 from Section 6.3.

Solution. Substituting $y=e^{\lambda t}$ into $y^{\prime \prime}=6 y^{\prime}-9 y$ gives

$$
\lambda^{2} e^{\lambda t}=6 \lambda e^{\lambda t}-9 e^{\lambda t}
$$

so $e^{\lambda t}(\lambda-3)^{2}=0$, which means $\lambda=3$ is a repeated root.
In terms of the matrix equation, since the matrix has trace 6 and determinant 9 , its only eigenvalue is 3 , with one independent eigenvector $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
To show that $y=t e^{3 t}$ is the second solution, just substitute this into the original differential equation. Since we have:

$$
\begin{aligned}
y^{\prime} & =e^{3 t}+3 t e^{3 t} \\
y^{\prime \prime} & =3 e^{3 t}+\left(3 e^{3 t}+9 t e^{3 t}\right)=6 e^{3 t}+9 t e^{3 t}
\end{aligned}
$$

Also,

$$
6 y^{\prime}-9 y=6 e^{3 t}+18 t e^{3 t}-9 t e^{3 t}=6 e^{3 t}+9 t e^{3 t}
$$

so we see that $y^{\prime \prime}=6 y^{\prime}-9 y$ when $y=t e^{3 t}$.
8. Do Problem 24 from Section 6.3.

Solution. A is an upper-triangular matrix, so we can read off its eigenvalues as the diagonal entries: 1,3 . By inspection we see that $(1,0)$ is an eigenvector with eigenvalue 1. To find an eigenvector with eigenvalue 3 we observe

$$
A-3 I=\left(\begin{array}{rr}
-2 & 1 \\
0 & 0
\end{array}\right) \text {, }
$$

and so $(1,2)$ is in its nullspace. Thus

$$
S=\left(\begin{array}{ll}
1 & \frac{1}{0} \\
0 & 2
\end{array}\right)
$$

and

$$
A=S \Lambda S^{-1}=\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
0 & 1
\end{array}\right) .
$$

Thus

$$
e^{A t}=S e^{\Lambda t} S^{-1}=\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right)\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{3 t}
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
e^{t} & \frac{1}{2}\left(e^{3 t}-e^{t}\right) \\
0 & e^{3 t}
\end{array}\right) .
$$

When $t=0$ this is $\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)$, as expected. Differentiating with respect to t, we get

$$
\left(\begin{array}{cc}
e^{t} & \frac{1}{2}\left(3 e^{3 t}-e^{t}\right) \\
0 & 3 e^{3 t}
\end{array}\right) ;
$$

at $t=0$ this is $\left(\begin{array}{ll}1 & \frac{1}{2} \\ 0 & 3\end{array}\right)=A$.
9. Do Problem 26 from Section 6.3.

Solution. $e^{A t}$ is nonsingular because
(a) its inverse is given by $e^{-A t}$,
(b) its eigenvalues are $e^{\lambda t}$ where λ is an eigenvalue of A - thus 0 is never an eigenvalue of $e^{A t}$.
10. Do Problem 30 from Section 6.3.

Solution. (a) $\left(\begin{array}{cc}1 & -\Delta t / 2 \\ \Delta t / 2 & 1\end{array}\right)^{-1}=\frac{1}{1+(\Delta t)^{2} / 4}\left(\begin{array}{cc}1 & \Delta t / 2 \\ -\Delta t / 2 & 1\end{array}\right)$, so if $\mathbf{U}_{n}=\left(Y_{n}, Z_{n}\right)$ we have

$$
\mathbf{U}_{n+1}=\frac{1}{1+(\Delta t)^{2} / 4}\left(\begin{array}{cc}
1 & \Delta t / 2 \\
-\Delta t / 2 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & \Delta t / 2 \\
-\Delta t / 2 & 1
\end{array}\right) \mathbf{U}_{n}=A \mathbf{U}_{n}
$$

where

$$
A=\frac{1}{1+(\Delta t)^{2} / 4}\left(\begin{array}{cc}
1-(\Delta t)^{2} / 4 & \Delta t \\
-\Delta t & 1-(\Delta t)^{2} / 4
\end{array}\right) .
$$

Then

$$
\begin{aligned}
A^{\mathrm{T}} A & =\frac{1}{\left(1+(\Delta t)^{2} / 4\right)^{2}}\left(\begin{array}{cc}
1-(\Delta t)^{2} / 4 & -\Delta t \\
\Delta t & 1-(\Delta t)^{2} / 4
\end{array}\right)\left(\begin{array}{cc}
1-(\Delta t)^{2} / 4 & \Delta t \\
-\Delta t & 1-(\Delta t)^{2} / 4
\end{array}\right) \\
& =\frac{1}{\left(1+(\Delta t)^{2} / 4\right)^{2}}\left(\begin{array}{ccc}
\left(1-(\Delta t)^{2} / 4\right)^{2}+(\Delta t)^{2} & 0 & \\
0 & \left(1-(\Delta t)^{2} / 4\right)^{2}+(\Delta t)^{2}
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

If $B^{T}=-B$ and $A=(I-B)^{-1}(I+B)$ then $A^{\mathrm{T}} A=\left(I+B^{\mathrm{T}}\right)\left(I-B^{\mathrm{T}}\right)^{-1}(I-$ $B)^{-1}(I+B)=(I-B)(I+B)^{-1}(I-B)^{-1}(I+B)$. But notice that $(I+B)(I-B)=$ $I-B^{2}=(I-B)(I+B)$, hence this equals $(I-B)(I-B)^{-1}(I+B)^{-1}(I+B)=I$. Similarly $A A^{\mathrm{T}}=(I-B)^{-1}(I+B)(I-B)(I+B)^{-1}=(I-B)^{-1}(I-B)(I+$ $B)(I+B)^{-1}=I$, so A is indeed orthogonal.
(b) If $\Delta t=2 \pi / 32$ then using Matlab to compute A^{32} gives

$$
\left(\begin{array}{cc}
0.9998 & -0.0201 \\
0.0201 & 0.9998
\end{array}\right),
$$

which is close to the identity, but there is clearly a potentially significant error.

