18.06 Spring 2012 - Problem Set 3

This problem set is due Thursday, March 1, 2012 at 4pm (hand in to Room 2-106). The textbook problems are out of the 4th edition. For computational problems, please include a printout of the code with the problem set (for MATLAB in particular, diary ('filename') will start a transcript session, diary off will end one.)

1. Without asking anyone for help, write down an accurate definition of what it means for a matrix to be in reduced row echelon form (RREF).

Solution. $m \times n$ matrix R is in RREF means
(a) R is in echelon form.
(b) Every pivot is 1.
(c) Columns with a pivot have no other nonzero entry.
2. TRUE or FALSE? (No need for explanation):
(a) Every upper-triangular matrix is in reduced row echelon form?
(b) Every lower-triangular matrix is in reduced row echelon form?
(c) Every permutation matrix is in reduced row echelon form?
(d) The following matrix is in reduced row echelon form?

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 2
\end{array}\right] .
$$

(e) The reduced row echelon form of A is unique?
(f) The full solution set of $A x=b$, where A is $m \times n$ and $b \in \mathbb{R}^{m}$, is always a vector subspace of \mathbb{R}^{n} ?
(g) The difference $\mathbf{a}=\mathbf{x}_{1}-\mathbf{x}_{2}$, between any two solutions \mathbf{x}_{1} and \mathbf{x}_{2} to $A \mathbf{x}=\mathbf{b}$, is a vector that belongs to the null space $N(A)$? (Apply the rule $A(\mathbf{x}+\lambda \mathbf{y})=$ $A \mathrm{x}+\lambda A \mathrm{y}$ to $A\left(\mathrm{x}_{1}-\mathbf{x}_{2}\right)$ to answer the question).

Solution. (a) No. The rows of all zeros must be below all the other rows. This is not true, for instance, of

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] .
$$

(b) No. For instance,

$$
\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

is not.
(c) No. For instance, for the matrix

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

the pivot of the second row is to the left of the pivot of the first row.
(d) No. The leading coefficient of the second row is not a one.
(e) Yes. This will be explained in class, though you do not need to know a proof. (The proof-oriented reader should read e.g. http://web.gccaz.edu/ wkehowsk/225-Linear-10-11-Sp/yuster-rref-unique.pdf .)
(f) No. For instance, the solution set of

$$
\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right]
$$

contains a unique vector, $[0,1]^{T}$. This is not a vector subspace of \mathbb{R}^{2}.
(g) Yes. $A\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)=A\left(\mathbf{x}_{1}\right)-A\left(\mathbf{x}_{2}\right)=\mathbf{b}-\mathbf{b}=\mathbf{0}$.

3. Do Problems 20 \& 23 from Section 3.2.

Solution to 3.2.20:
Let A be the matrix in the problem.
The column 5 does not have pivot. If not, since $(A)_{45}=c \neq 0$ is a pivot and $(A)_{4 i}=0$ for any $i \neq 5$, column $1+$ column $3+$ column $5=(*, *, *, c)^{T} \neq \mathbf{0}$. In other words, the fifth variable x_{5} is the only free variable. We have

$$
A \cdot\left[\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right]=\text { column } 1 \cdot 1+\operatorname{column} 3 \cdot 1+\operatorname{column} 5 \cdot 1=\mathbf{0}
$$

Hence the special solution is $(1,0,1,0,1)^{T}$ and the null space is $\left\{\left(x_{5}, 0, x_{5}, 0, x_{5}\right)^{T}\right.$: $\left.x_{5} \in \mathbf{R}\right\}$.
Solution to 3.2.23:

$$
(a, b, c)=\left(-\frac{1}{2},-2,-3\right)
$$

satisfies the equation

$$
\left[\begin{array}{lll}
1 & 0 & a \\
1 & 3 & b \\
5 & 1 & c
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]=0 .
$$

Hence

$$
\left[\begin{array}{lll}
1 & 0 & -\frac{1}{2} \\
1 & 3 & -2 \\
5 & 1 & -3
\end{array}\right]
$$

is a matrix we wanted.
4. Do Problem 35 from Section 3.2.

Solution. The nullspace of $B=[A A]$ contains all vectors $\mathbf{x}=\left[\begin{array}{c}\mathbf{y} \\ -\mathbf{y}\end{array}\right]$ for all \mathbf{y} in \mathbb{R}^{4}.
5. Do Problems $3 \& 8$ from Section 3.3.

Solution to 3.3.3:

$$
A=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 3 \\
2 & 4 & 6
\end{array}\right] \rightarrow\left[\begin{array}{lll}
2 & 4 & 6 \\
0 & 0 & 3 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 3 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]=R R E F(A)
$$

Using the same elimination or permutation operators as in the case A, we get

$$
\begin{aligned}
R R E F(B) & =[R R E F(A) R R E F(A)] \\
C=\left[\begin{array}{cc}
A & A \\
A & 0
\end{array}\right] \rightarrow\left[\begin{array}{cc}
A & A \\
0 & -A
\end{array}\right] & \rightarrow\left[\begin{array}{cc}
A & 0 \\
0 & -A
\end{array}\right] \rightarrow\left[\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right] \\
& \longrightarrow\left[\begin{array}{cc}
\operatorname{RREF}(A) & 0 \\
0 & \operatorname{RREF}(A)
\end{array}\right]=\operatorname{RREF}(C)
\end{aligned}
$$

Solution to 3.3.8:
If the matrix has rank 1, every column is constant multiple of any other nonzero columns. So

$$
A=\left[\begin{array}{ccc}
1 & 2 & 4 \\
2 & 4 & 8 \\
4 & 8 & 16
\end{array}\right], B=\left[\begin{array}{ccc}
3 & 9 & -\frac{9}{2} \\
1 & 3 & -\frac{3}{2} \\
2 & 6 & -3
\end{array}\right]
$$

For M, if $a \neq 0$,

$$
M=\left[\begin{array}{cc}
a & b \\
c & \frac{b c}{a}
\end{array}\right]
$$

and if $a=0$,

$$
M=\left[\begin{array}{ll}
0 & b \\
0 & d
\end{array}\right] \text { for any }(b, d) \neq(0,0), \text { or } M=\left[\begin{array}{ll}
0 & 0 \\
c & d
\end{array}\right] \text { for any }(c, d) \neq(0,0)
$$

6. Do Problems 17 \& 28 from Section 3.3.

Solution to 3.3.17:
(a) By matrix multiplication, each column of $A B$ is A times the corresponding column of B. So if column j of B is a combination of earlier columns, then column j of $A B$ is the same combination of earlier columns of $A B$. Thus rank $(A B) \leq \operatorname{rank}(B)$. There are no new pivot columns!
(b) The rank of B is $r=1$. Multiplying by A cannot increase this rank. The rank of $A B$ stays the same for $A_{1}=I$ and $B=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$. It drops to zero for $A_{2}=\left[\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right]$.

Solution to 3.3.28:
The row-column echelon form is always $\left[\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right] ; I$ is the $r \times r$ identity matrix.
7. Do Problems 5 \& 16 from Section 3.4.

Solution to 3.4.5: Consider the augmented matrix

$$
\left[\begin{array}{cccc}
1 & 2 & -2 & b_{1} \\
2 & 5 & -4 & b_{2} \\
4 & 9 & -8 & b_{3}
\end{array}\right]
$$

The operations those make the first 3×3 matrix to RREF change our augmented matrix to

$$
\left[\begin{array}{cccc}
1 & 0 & -2 & 5 b_{1}-2 b_{2} \\
0 & 1 & 0 & -2 b_{1}+b_{2} \\
0 & 0 & 0 & -2 b_{1}-b_{2}+b_{3}
\end{array}\right]
$$

Hence this equation is solvable when $-2 b_{1}-b_{2}+b_{3}=0$ and the set of solutions is $\left\{\left(5 b_{1}-2 b_{2}+2 z,-2 b_{1}+b_{2}, z\right): z \in \mathbf{R}\right\}$.
Solution to 3.4.16:
The largest possible rank of a 3 by 5 matrix is 3 . Then there is a pivot in every row of U and R. The solution of $A x=b$ always exists. The column space of A is \mathbf{R}^{3}. An example of A is

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

8. Do Problems 24 \& 33 from Section 3.4.

Solution to 3.4.24:
(a) $\left[\begin{array}{l}1 \\ 1\end{array}\right][x]=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$ has 0 or 1 solutions, depending on \mathbf{b}.
(b) $\left[\begin{array}{ll}1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=[b]$ has infinitely many solutions for every b.
(c) There are 0 or ∞ solutions when A has rank $r<m$ and $r<n$: the simplest examples is a zero matrix.
(d) One solution for all \mathbf{b} when A is square and invertible (like $A=I$).

Solution to 3.4.33:
If the complete solution to $A \mathbf{x}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ is $\mathbf{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ c\end{array}\right]$ then $A=\left[\begin{array}{ll}1 & 0 \\ 3 & 0\end{array}\right]$.
9. Do Problems 9 from Section 3.5.

Solution. (a) the dimension of \mathbf{R}^{3} is 3 and 3 is the biggest possible number of independent vectors in \mathbf{R}^{3}.
(b) there exists $\left(c_{1}, c_{2}\right) \neq(0,0)$ such that $c_{1} \cdot v_{1}+c_{2} \cdot v_{2}=0$.
(c) $0 \cdot v_{1}+1 \cdot(0,0,0)=(0,0,0)$.
(See Problem 10 on next page!)
10. In this exercise, we try MATLAB's function null(A) for finding a basis (i.e. a minimal set of spanning vectors = a maximal set of independent vectors) for the null space of a matrix. We also try $\operatorname{rref}(\mathrm{A})$ for finding the reduced row echelon form.

```
B = [1 0 0 0;
    0 0 1 0;
    0 0 0 1;
    0 1 0 0];
C = [1 [1 2 1 -2;
        0 0 1 5;
        0 0 0 0;
        0 0 0 0];
D = [\begin{array}{llll}{1}&{2}&{0}&{1;}\end{array}]
    0 2 2 1;
    0 0 3 3;
    1 0 0 4];
```

(a) Using null(), find a basis of each of $N(B), N(C)$ and $N(D)$ (the column vectors in the matrix MATLAB outputs are the basis vectors). Same for $N(B C)$ and $N(D C)$.
(b) Figure out whether $N(C)$ and $N(D C)$ are the same subspaces of \mathbb{R}^{4}, as follows: \longrightarrow MATLAB can easily perform this, if we make use of the following two facts, for V and W subspaces of \mathbb{R}^{n} with given collections of vectors used for spanning them, respectively $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ spanning V and $\mathbf{w}_{1}, \ldots, \mathbf{w}_{l}$ spanning W.
Fact 1: A vector $\mathbf{b} \in \mathbb{R}^{4}$ belongs to V if and only if the system $A \mathbf{x}=\mathbf{b}$ has at least one solution, where $A=\left[\mathbf{v}_{1} \mathbf{v}_{2} \ldots \mathbf{v}_{k}\right]$ is the matrix which as columns has a collection of vectors we use to span V.
Example (2×2) : In MATLAB we create the augmented matrix $[A \mid \mathbf{b}]$ and use the command rref.

```
A = [1 2;
    -1 -2];
b = [1;
        1];
>> A_aug_b = [A b}
A_aug_b =
    1 
```

>> rref(A_aug_b)
ans =

1	2	\mid	0
0	0	1	1

(Note: A_aug_b is only a variable name. The augmentation bars in the output will not show in MATLAB).
Notice the zero row that has a non-zero entry to the right of the bar: This system $A \mathbf{x}=\mathbf{b}$ has no solution. Hence, $\mathbf{b}=[1,1]^{T}$ is not in the subspace spanned by the columns of A.
Fact 2: Two subspaces are the same, $V=W$, if and only if:
i. Vectors spanning V lie in W, that is $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in W$ (so $V \subseteq W$), and
ii. Vectors spanning W lie in V, that is $\mathbf{w}_{1}, \ldots, \mathbf{w}_{k} \in V$ (so $W \subseteq V$).

Example: Referring to the previous example, the subspace V spanned by the vectors \mathbf{b} and $[0,1]^{T}$ cannot be the same as the subspace W spanned by the columns of A (since we saw $\mathbf{b} \notin W$).
Now, for using Fact $1 \&$ Fact 2 in MATLAB to determine if $N(C)$ and $N(D C)$ are in fact the same, you will need the ":" option:

```
>> A(:,2) %Example: Gives you the 2nd column from matrix A
```

Then proceed as in the examples, checking each basis vector from one space for membership of the other space.
(c) Which property of the square matrix D explains the result of your comparison of $N(C)$ and $N(D C)$? State this as a general rule, and put a box around it. Apply your rule to explain why $N(D C)$ and $N(B C)$ are the same subspace.
(d) Is $N(C B)$ the same as $N(C)$? Either use the method from (b) again (you can do it all at once using $\operatorname{rref}([\operatorname{null}(C B) \operatorname{null}(C)])$, if you carefully read off the result!), or simply try applying $C B$ to the basis vectors you found for $N(C)$, and vice versa.

Solution. (a) Bases for the null spaces are as follows:

```
>> null(B)
```

ans =
Empty matrix: 4-by-0
>> null(C)
ans =

$$
\begin{array}{rr}
0 & 0.9245 \\
0.5659 & -0.3142
\end{array}
$$

```
    -0.8085 -0.2115
        0.1617 0.0423
>> null(D)
ans =
    Empty matrix: 4-by-0
>> null(B*C)
ans =
            0 -0.9245
            0.5659 0.3142
    -0.8085 0.2115
            0.1617 -0.0423
>> null(D*C)
ans =
    -0.0331 0.9239
    -0.5543 -0.3343
            0.8155 -0.1824
    -0.1631 0.0365
```

(b) Here we get, for example:

```
nC=null(C) ;
nC_1 = nC(:,1);
nC_2 = nC(:,2);
nDC = null(D*C);
redux1 = rref([nDC nC_1])
redux2 = rref([nDC nC_2])
>> redux1 =
\begin{tabular}{rrc|c}
1.0000 & 0 & -0.9994 \\
0 & 1.0000 & \(\mid\) & -0.0358 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{tabular}
```

redux2 $=$

1.0000	0	-0.0358
0	1.0000	0.9994
0	0	0
0	0	\mid

Here we looked at the system $A \mathbf{x}=\mathbf{b}_{i}$, with A 's columns being the basis of $N(D C)$ and for $i=1,2$ let $\mathbf{b}_{1}=\mathrm{nC} _1, \mathbf{b}_{2}=\mathrm{nC} _1$ be the two basis vectors we got for $N(C)$ in (a). Since in both cases the system is consistent (the zero rows in the left compartment of the above RREF of the augmented matrix has a corresponding zero in the right compartment).
Thus, since $\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}} \in N(D C)$ and since $N(C)$ is spanned by its two basis vectors $\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}$, we conclude that: $N(C) \subseteq N(D C)$.
Note: $N(C) \subseteq N(D C)$ is true for any matrices D and C ! Why? Because if $\mathbf{x} \in N(C)$, meaning $C \mathbf{x}=0$, then also $D C \mathbf{x}=D \mathbf{0}=\mathbf{0}$ meaning $\mathbf{x} \in N(D C)$.
Similar code, reversing the roles of C and $D C$ checks for us that also (which is not always true - see below): $N(D C) \subseteq N(C)$.
Thus, we have checked that: $N(D C)=N(C)$.
(c) The property the square matrix D has is: Invertible. Here's the rule:

If D, C are any $n \times n$ matrices, and D invertible, then $N(D C)=N(C)$.
We saw the invertibility of D above in (a): The basis for the null space was \emptyset (the empty set), so $N(D)=\{0\}$ (the subspace only consisting of the zero vector). Thus, if we reduced D to its RREF matrix R we would obtain the 4×4 identity I (since D is square!). But this means that D is invertible.
This also explains why B is invertible, using (a). Now, we may use our new rule: $N(D C)=N\left(D\left(B^{-1} B\right) C\right)=N\left(\left(D B^{-1}\right) B C\right)=N(B C)$.
(d) No, $N(C B)$ and $N(C)$ are not the same (in this example).

```
nC=null(C);
nCB=null(C*B);
BigMat = rref([nCB nC]);
BigMat =
\begin{tabular}{lllll}
1 & 0 & \(\mid\) & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{tabular}
```

Note that we have solved all the four systems at once by using the augmentation. Reading left-to-right, you can see that none of the two basis vectors MATLAB chose for us for $N(C)$ belong to $N(C B)$. Reading right-to-left, we see that
reversely the $N(C B)$ basis we chose is not in $N(C)$. So these subspaces are not identical.
Alternatively, we can try:
C*B*nC_1

```
ans =
    -2.5870
    2.9913
0
0
```

Since that's not the zero vector, we have that the vector $\mathrm{nC} \mathrm{C}_{-} 1$ from $N(C)$ is not in $N(C B)$. So, these two subspaces are not the same.

