
18.06 Spring 2012 – Problem Set 3

This problem set is due Thursday, March 1, 2012 at 4pm (hand in to Room 2-106). The
textbook problems are out of the 4th edition. For computational problems, please include a
printout of the code with the problem set (for MATLAB in particular, diary(’filename’)
will start a transcript session, diary off will end one.)

1. Without asking anyone for help, write down an accurate definition of what it means
for a matrix to be in reduced row echelon form (RREF).

Solution. m× n matrix R is in RREF means

(a) R is in echelon form.

(b) Every pivot is 1.

(c) Columns with a pivot have no other nonzero entry.

2. TRUE or FALSE? (No need for explanation):

(a) Every upper-triangular matrix is in reduced row echelon form?

(b) Every lower-triangular matrix is in reduced row echelon form?

(c) Every permutation matrix is in reduced row echelon form?

(d) The following matrix is in reduced row echelon form?[
1 0 0
0 0 2

]
.

(e) The reduced row echelon form of A is unique?

(f) The full solution set of Ax = b, where A is m×n and b ∈ Rm, is always a vector
subspace of Rn?

(g) The difference a = x1 − x2, between any two solutions x1 and x2 to Ax = b,
is a vector that belongs to the null space N(A)? (Apply the rule A(x + λy) =
Ax+ λAy to A(x1 − x2) to answer the question).

Solution. (a) No. The rows of all zeros must be below all the other rows. This is not
true, for instance, of [

0 0
0 1

]
.

(b) No. For instance, [
0 0
1 0

]
is not.
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(c) No. For instance, for the matrix [
0 1
1 0

]
the pivot of the second row is to the left of the pivot of the first row.

(d) No. The leading coefficient of the second row is not a one.

(e) Yes. This will be explained in class, though you do not need to know a proof. (The
proof-oriented reader should read e.g. http://web.gccaz.edu/ wkehowsk/225-
Linear-10-11-Sp/yuster-rref-unique.pdf .)

(f) No. For instance, the solution set of[
1 2
1 0

] [
x1
x2

]
=

[
2
0

]
contains a unique vector, [0, 1]T . This is not a vector subspace of R2.

(g) Yes. A(x1 − x2) = A(x1)−A(x2) = b− b = 0.

3. Do Problems 20 & 23 from Section 3.2.

Solution to 3.2.20:

Let A be the matrix in the problem.
The column 5 does not have pivot. If not, since (A)45 = c 6= 0 is a pivot and (A)4i = 0
for any i 6= 5, column 1 + column 3 + column 5 = (∗, ∗, ∗, c)T 6= 0. In other words,
the fifth variable x5 is the only free variable. We have

A ·


1
0
1
0
1

 = column 1 · 1 + column 3 · 1 + column 5 · 1 = 0.

Hence the special solution is (1, 0, 1, 0, 1)T and the null space is {(x5, 0, x5, 0, x5)T :
x5 ∈ R}.
Solution to 3.2.23:

(a, b, c) =

(
−1

2
,−2,−3

)
satisfies the equation  1 0 a

1 3 b
5 1 c

 1
1
2

 = 0.
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Hence  1 0 −1
2

1 3 −2
5 1 −3


is a matrix we wanted.

4. Do Problem 35 from Section 3.2.

Solution. The nullspace of B = [AA] contains all vectors x =

[
y
−y

]
for all y in R4.

5. Do Problems 3 & 8 from Section 3.3.

Solution to 3.3.3:

A =

 0 0 0
0 0 3
2 4 6

 −→
 2 4 6

0 0 3
0 0 0

 −→
 1 2 3

0 0 3
0 0 0

 −→
 1 2 0

0 0 1
0 0 0

 = RREF (A).

Using the same elimination or permutation operators as in the case A, we get

RREF (B) = [RREF (A)RREF (A)].

C =

[
A A
A 0

]
−→

[
A A
0 −A

]
−→

[
A 0
0 −A

]
−→

[
A 0
0 A

]

−→
[
RREF (A) 0

0 RREF (A)

]
= RREF (C).

Solution to 3.3.8:

If the matrix has rank 1, every column is constant multiple of any other nonzero
columns. So

A =

 1 2 4
2 4 8
4 8 16

 , B =

 3 9 −9
2

1 3 −3
2

2 6 −3

 .
For M , if a 6= 0,

M =

[
a b

c bc
a

]
and if a = 0,

M =

[
0 b
0 d

]
for any (b, d) 6= (0, 0), or M =

[
0 0
c d

]
for any (c, d) 6= (0, 0).
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6. Do Problems 17 & 28 from Section 3.3.

Solution to 3.3.17:

(a) By matrix multiplication, each column of AB is A times the corresponding column
of B. So if column j of B is a combination of earlier columns, then column j of AB
is the same combination of earlier columns of AB. Thus rank (AB) ≤ rank (B).
There are no new pivot columns!

(b) The rank of B is r = 1. Multiplying by A cannot increase this rank. The

rank of AB stays the same for A1 = I and B =

[
1 1
1 1

]
. It drops to zero for

A2 =

[
1 1
−1 −1

]
.

Solution to 3.3.28:

The row-column echelon form is always
[
I 0
0 0

]
; I is the r × r identity matrix.

7. Do Problems 5 & 16 from Section 3.4.

Solution to 3.4.5: Consider the augmented matrix 1 2 −2 b1
2 5 −4 b2
4 9 −8 b3

 .
The operations those make the first 3 × 3 matrix to RREF change our augmented
matrix to  1 0 −2 5b1 − 2b2

0 1 0 −2b1 + b2
0 0 0 −2b1 − b2 + b3

 .
Hence this equation is solvable when −2b1 − b2 + b3 = 0 and the set of solutions is
{(5b1 − 2b2 + 2z,−2b1 + b2, z) : z ∈ R}.
Solution to 3.4.16:

The largest possible rank of a 3 by 5 matrix is 3. Then there is a pivot in every row
of U and R. The solution of Ax = b always exists. The column space of A is R3. An
example of A is  1 0 0 0 0

0 1 0 0 0
0 0 1 0 0

 .
8. Do Problems 24 & 33 from Section 3.4.

Solution to 3.4.24:

(a)
[
1
1

]
[x] =

[
b1
b2

]
has 0 or 1 solutions, depending on b.
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(b)
[
1 1

] [ x1
x2

]
= [b] has infinitely many solutions for every b.

(c) There are 0 or ∞ solutions when A has rank r < m and r < n: the simplest
examples is a zero matrix.

(d) One solution for all b when A is square and invertible (like A = I).

Solution to 3.4.33:

If the complete solution to Ax =

[
1
3

]
is x =

[
1
0

]
+

[
0
c

]
then A =

[
1 0
3 0

]
.

9. Do Problems 9 from Section 3.5.

Solution. (a) the dimension of R3 is 3 and 3 is the biggest possible number of inde-
pendent vectors in R3.

(b) there exists (c1, c2) 6= (0, 0) such that c1 · v1 + c2 · v2 = 0.

(c) 0 · v1 + 1 · (0, 0, 0) = (0, 0, 0).

(See Problem 10 on next page!)
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10. In this exercise, we try MATLAB’s function null(A) for finding a basis (i.e. a minimal
set of spanning vectors = a maximal set of independent vectors) for the null space of
a matrix. We also try rref(A) for finding the reduced row echelon form.

B = [1 0 0 0;
0 0 1 0;
0 0 0 1;
0 1 0 0];

C = [1 2 1 -2;
0 0 1 5;
0 0 0 0;
0 0 0 0];

D = [1 2 0 1;
0 2 2 1;
0 0 3 3;
1 0 0 4];

(a) Using null(), find a basis of each of N(B), N(C) and N(D) (the column vectors
in the matrix MATLAB outputs are the basis vectors). Same for N(BC) and
N(DC).

(b) Figure out whether N(C) and N(DC) are the same subspaces of R4, as follows:
−→ MATLAB can easily perform this, if we make use of the following two facts,
for V and W subspaces of Rn with given collections of vectors used for spanning
them, respectively v1, . . . ,vk spanning V and w1, . . . ,wl spanning W .
Fact 1: A vector b ∈ R4 belongs to V if and only if the system Ax = b has at
least one solution, where A = [v1 v2 . . . vk] is the matrix which as columns has
a collection of vectors we use to span V .
Example (2 × 2): In MATLAB we create the augmented matrix [A|b] and use
the command rref.

A = [1 2;
-1 -2];

b = [1;
1];

>> A_aug_b = [A b]

A_aug_b =
1 2 | 1

-1 -2 | 1
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>> rref(A_aug_b)

ans =
1 2 | 0
0 0 | 1

(Note: A_aug_b is only a variable name. The augmentation bars in the output
will not show in MATLAB).
Notice the zero row that has a non-zero entry to the right of the bar: This system
Ax = b has no solution. Hence, b = [1, 1]T is not in the subspace spanned by
the columns of A.
Fact 2: Two subspaces are the same, V =W , if and only if:

i. Vectors spanning V lie in W , that is v1, . . . ,vk ∈W (so V ⊆W ), and
ii. Vectors spanning W lie in V , that is w1, . . . ,wk ∈ V (so W ⊆ V ).

Example: Referring to the previous example, the subspace V spanned by the
vectors b and [0, 1]T cannot be the same as the subspace W spanned by the
columns of A (since we saw b /∈W ).
Now, for using Fact 1 & Fact 2 in MATLAB to determine if N(C) and N(DC)
are in fact the same, you will need the ":" option:

>> A(:,2) %Example: Gives you the 2nd column from matrix A

Then proceed as in the examples, checking each basis vector from one space for
membership of the other space.

(c) Which property of the square matrix D explains the result of your comparison
of N(C) and N(DC)? State this as a general rule, and put a box around it.
Apply your rule to explain why N(DC) and N(BC) are the same subspace.

(d) Is N(CB) the same as N(C)? Either use the method from (b) again (you can
do it all at once using rref([null(CB) null(C)]), if you carefully read off the
result!), or simply try applying CB to the basis vectors you found for N(C),
and vice versa.

Solution. (a) Bases for the null spaces are as follows:

>> null(B)

ans =

Empty matrix: 4-by-0

>> null(C)

ans =

0 0.9245
0.5659 -0.3142
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-0.8085 -0.2115
0.1617 0.0423

>> null(D)

ans =

Empty matrix: 4-by-0

>> null(B*C)

ans =

0 -0.9245
0.5659 0.3142

-0.8085 0.2115
0.1617 -0.0423

>> null(D*C)

ans =

-0.0331 0.9239
-0.5543 -0.3343
0.8155 -0.1824

-0.1631 0.0365

(b) Here we get, for example:

nC=null(C);
nC_1 = nC(:,1);
nC_2 = nC(:,2);

nDC = null(D*C);

redux1 = rref([nDC nC_1])
redux2 = rref([nDC nC_2])

>> redux1 =

1.0000 0 | -0.9994
0 1.0000 | -0.0358
0 0 | 0
0 0 | 0
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redux2 =

1.0000 0 | -0.0358
0 1.0000 | 0.9994
0 0 | 0
0 0 | 0

Here we looked at the system Ax = bi, with A’s columns being the basis of
N(DC) and for i = 1, 2 let b1 = nC_1, b2 = nC_1 be the two basis vectors
we got for N(C) in (a). Since in both cases the system is consistent (the zero
rows in the left compartment of the above RREF of the augmented matrix has
a corresponding zero in the right compartment).
Thus, since b1,b2 ∈ N(DC) and since N(C) is spanned by its two basis vectors
b1,b2, we conclude that: N(C) ⊆ N(DC).
Note: N(C) ⊆ N(DC) is true for any matrices D and C! Why? Because if
x ∈ N(C), meaning Cx = 0, then also DCx = D0 = 0 meaning x ∈ N(DC).
Similar code, reversing the roles of C and DC checks for us that also (which is
not always true - see below): N(DC) ⊆ N(C).
Thus, we have checked that: N(DC) = N(C).

(c) The property the square matrix D has is: Invertible. Here’s the rule:

If D,C are any n× n matrices, and D invertible, then N(DC) = N(C).

We saw the invertibility of D above in (a): The basis for the null space was ∅ (the
empty set), so N(D) = {0} (the subspace only consisting of the zero vector).
Thus, if we reduced D to its RREF matrix R we would obtain the 4× 4 identity
I (since D is square!). But this means that D is invertible.
This also explains why B is invertible, using (a). Now, we may use our new rule:
N(DC) = N(D(B−1B)C) = N((DB−1)BC) = N(BC).

(d) No, N(CB) and N(C) are not the same (in this example).

nC=null(C);
nCB=null(C*B);
BigMat = rref([nCB nC]);

BigMat =

1 0 | 0 0
0 1 | 0 0
0 0 | 1 0
0 0 | 0 1

Note that we have solved all the four systems at once by using the augmentation.
Reading left-to-right, you can see that none of the two basis vectors MATLAB
chose for us for N(C) belong to N(CB). Reading right-to-left, we see that
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reversely the N(CB) basis we chose is not in N(C). So these subspaces are not
identical.
Alternatively, we can try:

C*B*nC_1

ans =

-2.5870
2.9913

0
0

Since that’s not the zero vector, we have that the vector nC_1 from N(C) is not
in N(CB). So, these two subspaces are not the same.
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