Your PRINTED name is:

Pleasecircle your recitation: $\quad 7$

r01	T 11	$4-159$	Ailsa Keating	ailsa
r02	T 11	$36-153$	Rune Haugseng	haugseng
r03	T 12	$4-159$	Jennifer Park	jmypark
r04	T 12	$36-153$	Rune Haugseng	haugseng
r05	T 1	$4-153$	Dimiter Ostrev	ostrev
r06	T 1	$4-159$	Uhi Rinn Suh	ursuh
r07	T 1	$66-144$	Ailsa Keating	ailsa
r08	T 2	$66-144$	Niels Martin Moller	moller
r09	T 2	$4-153$	Dimiter Ostrev	ostrev
r10	ESG		Gabrielle Stoy	gstoy

1 (12 pts.)
(a) - Find the eigenvalues and eigenvectors of A.

$$
A=\left[\begin{array}{lll}
3 & 1 & 4 \\
0 & 1 & 5 \\
0 & 1 & 5
\end{array}\right]
$$

Solution. The eigenvalues are:

$$
\lambda=0,3,6
$$

The corresponding eigenvectors are:
$\lambda=0: \quad \mathbf{v}_{1}=\left[\begin{array}{r}1 \\ -15 \\ 3\end{array}\right]$

$$
\lambda=3: \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

$\lambda=6: \quad \mathbf{v}_{3}=\left[\begin{array}{l}5 \\ 3 \\ 3\end{array}\right]$
(b) - Write the vector $\mathbf{v}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ as a linear combination of eigenvectors of A.

- Find the vector $A^{10} \mathbf{v}$.

Solution. We have that, forming $T=\left[v_{1}\left|v_{2}\right| v_{3}\right]$ (with columns $=$ the three vectors),

$$
\mathbf{y}=T^{-1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-2 / 3 \\
1 / 3
\end{array}\right]
$$

Or in other words:

$$
\mathbf{v}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=0\left[\begin{array}{c}
1 \\
-15 \\
3
\end{array}\right]-\frac{2}{3}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\frac{1}{3}\left[\begin{array}{l}
5 \\
3 \\
3
\end{array}\right]
$$

Therefore, we also see:

$$
A^{10} \mathbf{v}=-3^{10} \frac{2}{3}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+6^{10} \frac{1}{3}\left[\begin{array}{l}
5 \\
3 \\
3
\end{array}\right] \stackrel{(*)}{=}\left[\begin{array}{c}
100737594 \\
60466176 \\
60466176
\end{array}\right]
$$

(*) Required for mental arithmetics wizards only.
(c) If you solve $\frac{d \mathbf{u}}{d t}=-A \mathbf{u}$ (notice the minus sign), with $\mathbf{u}(0)$ a given vector, then as $t \rightarrow \infty$ the solution $\mathbf{u}(t)$ will always approach a multiple of a certain vector \mathbf{w}.

- Find this steady-state vector w.

Solution. Since the eigenvalues of $-A$ are $0,-3,-6$, we see that this steady state is:

$$
\mathbf{w}=v_{1}=\left[\begin{array}{c}
1 \\
-15 \\
3
\end{array}\right]
$$

2 (12 pts.)

Suppose A has rank 1, and B has rank 2 (A and B are both 3×3 matrices).
(a) - What are the possible ranks of $A+B$?

Solution. Of course, $0 \leq \operatorname{rank}(A+B) \leq 3$. But the only ranks that are possible are:

$$
\operatorname{rank}(A+B)=1,2,3
$$

The reason 0 is not an option is: It implies $A+B=0$, i.e. that $A=-B$. But $\operatorname{rank}(-B)=\operatorname{rank}(B)$, so for that to happen A and B should have had the same rank.
(b) - Give an example of each possibility you had in (a).

Solution. Here are some simple examples:
Example w/ $\operatorname{rank}(A+B)=1$: Take e.g.

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \text { and } \quad B=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$\underline{\text { Example w } / \operatorname{rank}(A+B)=2 \text { : Take e.g. }}$

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \text { and } \quad B=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Example w/ $\operatorname{rank}(A+B)=3$: Take e.g.

$$
A=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad \text { and } \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

(c) - What are the possible ranks of $A B$?

- Give an example of each possibility.

Solution. As a general rule, recall $0 \leq \operatorname{rank}(A B) \leq \min (\operatorname{rank}(A), \operatorname{rank}(B))=1$. In this case, both possibilities do happen:

$$
\operatorname{rank}(A B)=0,1
$$

Diagonal examples suffice:
$\underline{\text { Example } \mathrm{w} / \operatorname{rank}(A B)=0: ~ T a k e ~ e . g . ~}$

$$
A=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad \text { and } \quad B=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Example w/ $\operatorname{rank}(A B)=1$: Take e.g.

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \text { and } \quad B=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

3 (12 pts.)

(a) - Find the three pivots and the determinant of A.

$$
A=\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 1 \\
-1 & 1 & 0
\end{array}\right]
$$

Solution. We see that

$$
A \sim\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & -2
\end{array}\right]
$$

Thus,

$$
\text { The pivots are } 1,1,-2
$$

Since we reduced A without any row switches (permutation P 's), or row scalings, we have:

$$
\operatorname{det} A=1 \cdot 1 \cdot(-2)=-2
$$

(b) - The rank of $A-I$ is \qquad , so that $\lambda=$ \qquad is an eigenvalue.

- The remaining two eigenvalues of A are $\lambda=$ \qquad .
- These eigenvalues are all \qquad , because $A^{T}=A$.

Solution. We see that

$$
\operatorname{rank}(A-I)=2
$$

So $\operatorname{dim} N(A-I)=1$. Thus,

$$
\lambda=1
$$

is an eigenvalue of algebraic and geometric multiplicity one.
The other two eigenvalues of A are:

$$
\lambda=-1,2
$$

$$
\text { The eigenvalues are all real values, because } A \text { is symmetric. }
$$

(c) The unit eigenvectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ will be orthonormal.

- Prove that:

$$
A=\lambda_{1} \mathbf{x}_{1} \mathbf{x}_{1}^{T}+\lambda_{2} \mathbf{x}_{2} \mathbf{x}_{2}^{T}+\lambda_{3} \mathbf{x}_{3} \mathbf{x}_{3}^{T} .
$$

You may compute the \mathbf{x}_{i} 's and use numbers. Or, without numbers, you may show that the right side has the correct eigenvectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ with eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$.

Solution. As suggested, we check that A does the correct thing on the basis $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{2}\right\}$.

$$
\left(\lambda_{1} \mathbf{x}_{1} \mathbf{x}_{1}^{T}+\lambda_{2} \mathbf{x}_{2} \mathbf{x}_{2}^{T}+\lambda_{3} \mathbf{x}_{3} \mathbf{x}_{3}^{T}\right) \mathbf{x}_{\mathbf{i}}=\lambda_{i}\left(\mathbf{x}_{i}^{T} \mathbf{x}_{i}\right) \mathbf{x}_{i}=\lambda_{i} \mathbf{x}_{i}=A \mathbf{x}_{i}
$$

Having checked this, then by linearity of matrix multiplication, the two expressions agree always (and hence the matrices are identical).

For the record, the three vectors are:

$$
\begin{aligned}
& \mathbf{x}_{\mathbf{1}}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
& \mathbf{x}_{\mathbf{2}}=\frac{1}{\sqrt{6}}\left[\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right] \\
& \mathbf{x}_{\mathbf{3}}=\frac{1}{\sqrt{3}}\left[\begin{array}{r}
1 \\
-1 \\
-1
\end{array}\right]
\end{aligned}
$$

4 (12 pts.)

This problem is about $x+2 y+2 z=0$, which is the equation of a plane through $\mathbf{0}$ in \mathbb{R}^{3}.
(a) - That plane is the nullspace of what matrix A ?
$A=$

- Find an orthonormal basis for that nullspace (that plane).

Solution.

$$
A=\left[\begin{array}{lll}
1 & 2 & 2
\end{array}\right]
$$

We could identify a basis of $N(A)$ as usual, then apply Gram-Schmidt to make it an orthonormal basis.

But if we can find two orthonormal vectors in $N(A)$, we are done. Here, one can first easily guess one vector in $N(A)$:

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right] \in N(A)
$$

Then anything of the form $\left[\begin{array}{lll}a & 1 & 1\end{array}\right]$ will be orthogonal to \mathbf{v}_{1}, and we pick the one that is in the null space:

$$
\mathbf{v}_{2}=\left[\begin{array}{r}
-4 \\
1 \\
1
\end{array}\right] \in N(A)
$$

Then an orthonormal basis is:

$$
\mathbf{q}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right], \quad \mathbf{q}_{2}=\frac{1}{3 \sqrt{2}}\left[\begin{array}{r}
-4 \\
1 \\
1
\end{array}\right]
$$

(b) That plane is the column space of many matrices B.

- Give two examples of B.

Solution. We can use the basis vectors from above as columns, and (independent) linear combinations of them. Or filling in a zero column:

$$
\begin{gathered}
\begin{array}{|c}
B_{1}=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right] \\
\hline B_{2}=\left[\begin{array}{ll}
\mathbf{v}_{1} & 2 \mathbf{v}_{1}+\mathbf{v}_{2}
\end{array}\right] \\
B_{3}=\left[\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{0}
\end{array}\right]
\end{array} . \begin{array}{c}
\\
\hline
\end{array} \\
\hline
\end{gathered}
$$

Then $c\left(B_{i}\right)=N(A)$.
(c) - How would you compute the projection matrix P onto that plane? (A formula is enough)

- What is the rank of P ?

Solution. It can be computed using a matrix B from above (if it has independent columns: So B_{1}, B_{2} but not B_{3} here), via the usual formula:

$$
P=B\left(B^{T} B\right)^{-1} B^{T}
$$

For a projection, $c(P)$ is always the subpace it projects on, in this case it is the two-dimensional plane:

$$
\operatorname{rank}(P)=\operatorname{dim} c(P)=2
$$

5 (12 pts.)

Suppose \mathbf{v} is any unit vector in \mathbb{R}^{3}. This question is about the matrix H.

$$
H=I-2 \mathbf{v} \mathbf{v}^{T}
$$

(a) - Multiply H times H to show that $H^{2}=I$.

Solution.

$$
H^{2}=\left(I-2 \mathbf{v} \mathbf{v}^{T}\right)^{2}=I^{2}+4\left(\mathbf{v v}^{T}\right)^{2}-4 \mathbf{v} \mathbf{v}^{T}=I+4 \mathbf{v} \mathbf{v}^{T}-4 \mathbf{v} \mathbf{v}^{T}=I
$$

(b) - Show that H passes the tests for being a symmetric matrix and an orthogonal matrix.

Solution. Transpose is linear, $I^{T}=I$, and anything of the form $A A^{T}$ is symmetric:

$$
\left(I-2 \mathbf{v} \mathbf{v}^{T}\right)^{T}=I-2\left(\mathbf{v}^{T}\right)^{T} \mathbf{v}^{T}=I-2 \mathbf{v} \mathbf{v}^{T}
$$

For orthogonality, we use (a) and symmetry:

$$
H H^{T}=H^{2}=I
$$

(c) - What are the eigenvalues of H ?

You have enough information to answer for any unit vector \mathbf{v}, but you can choose one \mathbf{v} and compute the λ 's.

Solution. Note first that (since $\|\mathbf{v}\|=1$):

$$
H \mathbf{v}=\mathbf{v}-2\left(\mathbf{v}^{T} \mathbf{v}\right) \mathbf{v}=-\mathbf{v}
$$

so that

$$
\lambda=-1
$$

is an eigenvalue (with a one-dimensional eigenspace spanned by \mathbf{v}).
Let on the other hand $\mathbf{u} \in(\operatorname{span}\{\mathbf{v}\})^{\perp}$ be any vector orthogonal to \mathbf{v}. Then we have:

$$
H \mathbf{u}=\mathbf{u}-2\left(\mathbf{v}^{T} \mathbf{u}\right) \mathbf{v}=\mathbf{u}
$$

so that

$$
\lambda=1
$$

is also an eigenvalue.
Since $(\operatorname{span}\{\mathbf{v}\})^{\perp}$ is two-dimensional, we have found all eigenvalues.

6 (12 pts.)

(a) - Find the closest straight line $y=C t+D$ to the 5 points:

$$
(t, y)=(-2,0), \quad(-1,0), \quad(0,1), \quad(1,1), \quad(2,1)
$$

Solution. We insert all points into the equation:

$$
\begin{array}{r}
-2 C+D=0 \\
-C+D=0 \\
0+D=1 \\
1+D=1 \\
2 C+D=1
\end{array}
$$

Written as a matrix system:

$$
A \mathbf{x}=\left[\begin{array}{cc}
-2 & 1 \\
-1 & 1 \\
0 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
1
\end{array}\right]=\mathbf{b}
$$

We consider instead $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$. We compute:

$$
A^{T} A=\left[\begin{array}{cc}
10 & 0 \\
0 & 5
\end{array}\right], \quad A^{T} \mathbf{b}=\left[\begin{array}{l}
3 \\
3
\end{array}\right]
$$

and

$$
\left(A^{T} A\right)^{-1}=\left[\begin{array}{cc}
1 / 10 & 0 \\
0 & 1 / 5
\end{array}\right]
$$

Thus finally:

$$
\left[\begin{array}{l}
C \\
D
\end{array}\right]=\hat{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}=\left[\begin{array}{c}
3 / 10 \\
3 / 5
\end{array}\right]_{\text {Page } 11 \text { of } 14}
$$

So, the closest line to the five points is:

$$
y=\frac{3}{10} t+\frac{3}{5} .
$$

(b) - The word "closest" means that you minimized which quantity to find your line?

Solution. It means that the sum of squares deviation $\|A \mathbf{x}-\mathbf{b}\|^{2}$ was minimized.
(c) If $A^{T} A$ is invertible, what do you know about its eigenvalues and eigenvectors? (Technical point: Assume that the eigenvalues are distinct - no eigenvalues are repeated). Since $A^{T} A$ is symmetric and $\mathbf{x} \cdot\left(A^{T} A \mathbf{x}\right)=\|A \mathbf{x}\|^{2} \geq 0$ always, it is positive semi-definite. Since $N\left(A^{T} A\right)=\{0\}$, zero is not eigenvalue. Hence:

The eigenvalues of $A^{T} A$ are positive, if A^{T} is invertible
By symmetry:
Eigenvectors belonging to different eigenvalues are orthogonal

7 (12 pts.)

This symmetric Hadamard matrix has orthogonal columns:

$$
H=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right], \quad \text { and } \quad H^{2}=4 I
$$

(a) What is the determinant of H ?

Solution. By row reduction, we get the pivots $1,-2,-2,4$, so:

$$
\operatorname{det} H=16
$$

(b) What are the eigenvalues of H ? (Use $H^{2}=4 I$ and the trace of H).

Solution. By $H^{2}=4 I$, the eigenvalues are all either ± 2. They sum up to $\operatorname{tr} H=0$. Hence:

$$
\text { Two eigenvalues must be }+2 \text {, and two eigenvalues be }-2
$$

Note also that this shows $\operatorname{det} H=16$ as in (a)
(c) What are the singular values of H ?

The singular values of H are $2,2,2,2$

8 (16 pts.)

In this TRUE/FALSE problem, you should circle your answer to each question.
(a) Suppose you have 101 vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{101} \in \mathbb{R}^{100}$.

- Each v_{i} is a combination of the other 100 vectors:

TRUE - FALSE

- Three of the v_{i} 's are in the same 2-dimensional plane:

TRUE - FALSE
(b) Suppose a matrix A has repeated eigenvalues $7,7,7$, so $\operatorname{det}(A-\lambda I)=(7-\lambda)^{3}$.

- Then A certainly cannot be diagonalized $\left(A=S \Lambda S^{-1}\right)$:

TRUE - FALSE

- The Jordan form of A must be $\mathcal{J}=\left[\begin{array}{lll}7 & 1 & 0 \\ 0 & 7 & 1 \\ 0 & 0 & 7\end{array}\right]$:
(c) Suppose A and B are 3×5.
- Then $\operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)$:

TRUE - FALSE
(d) Suppose A and B are 4×4.

- Then $\operatorname{det}(A+B) \leq \operatorname{det}(A)+\operatorname{det}(B)$:

TRUE - FALSE
(e) Suppose \mathbf{u} and \mathbf{v} are orthonormal, and call the vector $\mathbf{b}=3 \mathbf{u}+\mathbf{v}$. Take V to be the line of all multiples of $\mathbf{u}+\mathbf{v}$.

- The orthogonal projection of \mathbf{b} onto V is $2 \mathbf{u}+2 \mathbf{v}$:
(f) Consider the transformation $T(x)=\int_{-x}^{x} f(t) d t$, for a fixed function f. The input is x, the output is $T(x)$.
- Then T is always a linear transformation:

