Grading

1
2
Your PRINTED name is:

Pleasecircle your recitation: $\quad 7$
8

r01	T 11	4-159	Ailsa Keating	ailsa
r02	T 11	$36-153$	Rune Haugseng	haugseng r03
T 12	$4-159$	Jennifer Park	jmypark	
r04	T 12	$36-153$	Rune Haugseng	haugseng
r05	T 1	$4-153$	Dimiter Ostrev	ostrev
r06	T 1	$4-159$	Uhi Rinn Suh	ursuh
r07	T 1	$66-144$	Ailsa Keating	ailsa
r08	T 2	$66-144$	Niels Martin Moller	moller
r09	T 2	$4-153$	Dimiter Ostrev	ostrev
r10	ESG		Gabrielle Stoy	gstoy

1 (12 pts.)
(a) - Find the eigenvalues and eigenvectors of A.

$$
A=\left[\begin{array}{lll}
3 & 1 & 4 \\
0 & 1 & 5 \\
0 & 1 & 5
\end{array}\right]
$$

(b) - Write the vector $\mathbf{v}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ as a linear combination of eigenvectors of A.

- Find the vector $A^{10} \mathbf{v}$.
(c) If you solve $\frac{d \mathbf{u}}{d t}=-A \mathbf{u}$ (notice the minus sign), with $\mathbf{u}(0)$ a given vector, then as $t \rightarrow \infty$ the solution $\mathbf{u}(t)$ will always approach a multiple of a certain vector \mathbf{w}.
- Find this steady-state vector w.

2 (12 pts.)

Suppose A has rank 1, and B has rank 2 (A and B are both 3×3 matrices).
(a) - What are the possible ranks of $A+B$?
(b) - Give an example of each possibility you had in (a).
(c) - What are the possible ranks of $A B$?

- Give an example of each possibility.

This page intentionally blank.

3 (12 pts.)
(a) - Find the three pivots and the determinant of A.

$$
A=\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 1 \\
-1 & 1 & 0
\end{array}\right]
$$

(b) - The rank of $A-I$ is \qquad , so that $\lambda=$ \qquad is an eigenvalue.

- The remaining two eigenvalues of A are $\lambda=$ \qquad .
- These eigenvalues are all \qquad because $A^{T}=A$.
(c) The unit eigenvectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ will be orthonormal.
- Prove that:

$$
A=\lambda_{1} \mathbf{x}_{1} \mathbf{x}_{1}^{T}+\lambda_{2} \mathbf{x}_{2} \mathbf{x}_{2}^{T}+\lambda_{3} \mathbf{x}_{3} \mathbf{x}_{3}^{T}
$$

You may compute the \mathbf{x}_{i} 's and use numbers. Or, without numbers, you may show that the right side has the correct eigenvectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ with eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$.

4 (12 pts.)

This problem is about $x+2 y+2 z=0$, which is the equation of a plane through $\mathbf{0}$ in \mathbb{R}^{3}.
(a) - That plane is the nullspace of what matrix A ?
$A=$

- Find an orthonormal basis for that nullspace (that plane).
(b) That plane is the column space of many matrices B.
- Give two examples of B.
(c) - How would you compute the projection matrix P onto that plane? (A formula is enough)
- What is the rank of P ?

5 (12 pts.)

Suppose \mathbf{v} is any unit vector in \mathbb{R}^{3}. This question is about the matrix H.

$$
H=I-2 \mathbf{v} \mathbf{v}^{T}
$$

(a) - Multiply H times H to show that $H^{2}=I$.
(b) - Show that H passes the tests for being a symmetric matrix and an orthogonal matrix.
(c) - What are the eigenvalues of H ?

You have enough information to answer for any unit vector \mathbf{v}, but you can choose one \mathbf{v} and compute the λ 's.

6 (12 pts.)
(a) - Find the closest straight line $y=C t+D$ to the 5 points:

$$
(t, y)=(-2,0), \quad(-1,0), \quad(0,1), \quad(1,1), \quad(2,1)
$$

(b) - The word "closest" means that you minimized which quantity to find your line?
(c) - If $A^{T} A$ is invertible, what do you know about its eigenvalues and eigenvectors? (Technical point: Assume that the eigenvalues are distinct - no eigenvalues are repeated).

7 (12 pts.)

This symmetric Hadamard matrix has orthogonal columns:

$$
H=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right], \quad \text { and } \quad H^{2}=4 I
$$

(a) What is the determinant of H ?
(b) What are the eigenvalues of H ? (Use $H^{2}=4 I$ and the trace of H).
(c) What are the singular values of H ?

8 (16 pts.)

In this TRUE/FALSE problem, you should circle your answer to each question.
(a) Suppose you have 101 vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{101} \in \mathbb{R}^{100}$.

- Each v_{i} is a combination of the other 100 vectors: TRUE - FALSE
- Three of the v_{i} 's are in the same 2-dimensional plane:

TRUE - FALSE
(b) Suppose a matrix A has repeated eigenvalues $7,7,7$, so $\operatorname{det}(A-\lambda I)=(7-\lambda)^{3}$.

- Then A certainly cannot be diagonalized $\left(A=S \Lambda S^{-1}\right): \quad$ TRUE - FALSE
- The Jordan form of A must be $\mathcal{J}=\left[\begin{array}{lll}7 & 1 & 0 \\ 0 & 7 & 1 \\ 0 & 0 & 7\end{array}\right]$:

TRUE - FALSE
(c) Suppose A and B are 3×5.

- Then $\operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)$:

TRUE - FALSE
(d) Suppose A and B are 4×4.

- Then $\operatorname{det}(A+B) \leq \operatorname{det}(A)+\operatorname{det}(B)$:

TRUE - FALSE
(e) Suppose \mathbf{u} and \mathbf{v} are orthonormal, and call the vector $\mathbf{b}=3 \mathbf{u}+\mathbf{v}$. Take V to be the line of all multiples of $\mathbf{u}+\mathbf{v}$.

- The orthogonal projection of \mathbf{b} onto V is $2 \mathbf{u}+2 \mathbf{v}$: TRUE - FALSE
(f) Consider the transformation $T(x)=\int_{-x}^{x} f(t) d t$, for a fixed function f. The input is x, the output is $T(x)$.
- Then T is always a linear transformation:

TRUE - FALSE

This page intentionally blank.

This page intentionally blank.

This is the end of 18.06. Hope you enjoyed learning Linear Algebra!

