18.06 Solutions to PSet 9

6.7:

3: If A has rank 1 then so does $A^{\mathrm{T}} A$. The only nonzero eigenvalue of $A^{\mathrm{T}} A$ is its trace, which is the sum of all $a_{i j}^{2}$. (Each diagonal entry of $A^{\mathrm{T}} A$ is the sum of $a_{i j}^{2}$ down one column, so the trace is the sum down all columns.) Then $\sigma_{1}=$ square root of this sum, and $\sigma_{1}^{2}=$ this sum of all $a_{i j}^{2}$.
6: $A A^{\mathrm{T}}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ has $\sigma_{1}^{2}=3$ with $\boldsymbol{u}_{1}=\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$ and $\sigma_{2}^{2}=1$ with $\boldsymbol{u}_{2}=\left[\begin{array}{c}1 / \sqrt{2} \\ -1 / \sqrt{2}\end{array}\right]$.
$A^{\mathrm{T}} A=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1\end{array}\right]$ has $\sigma_{1}^{2}=3$ with $\boldsymbol{v}_{1}=\left[\begin{array}{c}1 / \sqrt{6} \\ 2 / \sqrt{6} \\ 1 / \sqrt{6}\end{array}\right], \quad \sigma_{2}^{2}=1$ with $\boldsymbol{v}_{2}=\left[\begin{array}{c}1 / \sqrt{2} \\ 0 \\ -1 / \sqrt{2}\end{array}\right]$;
and $\boldsymbol{v}_{3}=\left[\begin{array}{r}1 / \sqrt{3} \\ -1 / \sqrt{3} \\ 1 / \sqrt{3}\end{array}\right]$. Then $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]=\left[\begin{array}{ll}\boldsymbol{u}_{1} & \boldsymbol{u}_{2}\end{array}\right]\left[\begin{array}{ccc}\sqrt{3} & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \boldsymbol{v}_{3}\end{array}\right]^{\mathrm{T}}$.
7: The matrix A in Problem 6 had $\sigma_{1}=\sqrt{3}$ and $\sigma_{2}=1$ in Σ. The smallest change to rank 1 is to make $\sigma_{2}=\mathbf{0}$. In the factorization

$$
A=U \Sigma V^{\mathrm{T}}=\boldsymbol{u}_{1} \sigma_{1} \boldsymbol{v}_{1}^{\mathrm{T}}+\boldsymbol{u}_{2} \sigma_{2} \boldsymbol{v}_{2}^{\mathrm{T}}
$$

this change $\sigma_{2} \rightarrow 0$ will leave the closest rank-1 matrix as $\boldsymbol{u}_{1} \sigma_{1} \boldsymbol{v}_{1}^{\mathrm{T}}$. See Problem 14 for the general case of this problem.
9: $A=U V^{\mathrm{T}}$ since all $\sigma_{j}=1$, which means that $\Sigma=I$.
10: A rank-1 matrix with $A \boldsymbol{v}=12 \boldsymbol{u}$ would have \boldsymbol{u} in its column space, so $A=\boldsymbol{u}^{\mathrm{T}}$ for some vector \boldsymbol{w}. I intended (but didn't say) that \boldsymbol{w} is a multiple of the unit vector $\boldsymbol{v}=\frac{1}{2}(1,1,1,1)$ in the problem. Then $A=12 \boldsymbol{u} \boldsymbol{v}^{\mathrm{T}}$ to get $A \boldsymbol{v}=12 \boldsymbol{u}$ when $\boldsymbol{v}^{\mathrm{T}} \boldsymbol{v}=1$.
11: If A has orthogonal columns $\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{n}$ of lengths $\sigma_{1}, \ldots, \sigma_{n}$, then $A^{\mathrm{T}} A$ will be diagonal with entries $\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}$. So the σ 's are definitely the singular values of A (as expected). The eigenvalues of that diagonal matrix $A^{\mathrm{T}} A$ are the columns of I, so $V=I$ in the SVD. Then the \boldsymbol{u}_{i} are $A \boldsymbol{v}_{i} / \sigma_{i}$ which is the unit vector $\boldsymbol{w}_{i} / \sigma_{i}$.

The SVD of this A with orthogonal columns is $A=U \Sigma V^{\mathrm{T}}=\left(A \Sigma^{-1}\right)(\Sigma)(I)$.

14: he smallest change in A is to set its smallest singular value σ_{2} to zero. See $\# \mathbf{7}$.
15: The singular values of $A+I$ are not $\sigma_{j}+1$. They come from eigenvalues of $(A+I)^{\mathrm{T}}(A+I)$.

8.1:

3: The rows of the free-free matrix in equation (9) add to [$\left.\begin{array}{lll}0 & 0 & 0\end{array}\right]$ so the right side needs $f_{1}+f_{2}+f_{3}=0 . \boldsymbol{f}=(-1,0,1)$ gives $c_{2} u_{1}-c_{2} u_{2}=-1, c_{3} u_{2}-c_{3} u_{3}=-1,0=0$. Then $\boldsymbol{u}_{\text {particular }}=\left(-c_{2}^{-1}-c_{3}^{-1},-c_{3}^{-1}, 0\right)$. Add any multiple of $\boldsymbol{u}_{\text {nullspace }}=(1,1,1)$.

4: $\int-\frac{d}{d x}\left(c(x) \frac{d u}{d x}\right) d x=-\left[c(x) \frac{d u}{d x}\right]_{0}^{1}=0$ (bdry cond) so we need $\int f(x) d x=0$.
7: For 5 springs and 4 masses, the 5 by $4 A$ has two nonzero diagonals: all $a_{i i}=1$ and $a_{i+1, i}=-1$. With $C=\operatorname{diag}\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right)$ we get $K=A^{\mathrm{T}} C A$, symmetric tridiagonal with diagonal entries $K_{i i}=c_{i}+c_{i+1}$ and off-diagonals $K_{i+1, i}=-c_{i+1}$. With $C=I$ this K is the $-1,2,-1$ matrix and $K(2,3,3,2)=(1,1,1,1)$ solves $K \boldsymbol{u}=$ ones $(4,1)$. (K^{-1} will solve $K \boldsymbol{u}=$ ones(4).)

