18.06 Solutions to PSet 8

6.4:

5: $Q=\frac{1}{3}\left[\begin{array}{rrr}2 & 1 & 2 \\ 2 & -2 & -1 \\ -1 & -2 & 2\end{array}\right] . \quad \begin{aligned} & \text { The columns of } Q \text { are unit eigenvectors of } A \\ & \text { Each unit eigenvector could be multiplied by }-1\end{aligned}$
7: (a) (a) $\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ has $\lambda=-1$ and 3 (b) The pivots have the same signs as the λ 's
(c) trace $=\lambda_{1}+\lambda_{2}=2$, so A can't have two negative eigenvalues. $\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ has $\lambda=-1$ and 3 (b) The pivots have the same signs as the λ 's (c) trace $=\lambda_{1}+\lambda_{2}=2$, so A can't have two negative eigenvalues.

So $-\lambda$ is also an eigenvalue of B. (b) $A^{\mathrm{T}} A \boldsymbol{z}=A^{\mathrm{T}}(\lambda \boldsymbol{y})=\lambda^{2} \boldsymbol{z}$. (c) $\lambda=-1,-1,1,1$;
$\boldsymbol{x}_{1}=(1,0,-1,0), \boldsymbol{x}_{2}=(0,1,0,-1), \boldsymbol{x}_{3}=(1,0,1,0), \boldsymbol{x}_{4}=(0,1,0,1)$.
23: A is invertible, orthogonal, permutation, diagonalizable, Markov; B is projection, diagonalizable, Markov. A allows $Q R, S \Lambda S^{-1}, Q \Lambda Q^{\mathrm{T}} ; B$ allows $S \Lambda S^{-1}$ and $Q \Lambda Q^{\mathrm{T}}$.

6.5:

8: $A=\left[\begin{array}{rr}3 & 6 \\ 6 & 16\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]\left[\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right] . \begin{aligned} & \text { Pivots } 3,4 \text { outside squares, } \ell_{i j} \text { inside. } \\ & \boldsymbol{x}^{\mathrm{T}} A \boldsymbol{x}=3(x+2 y)^{2}+4 y^{2}\end{aligned}$
12: A is positive definite for $c>1$; determinants $c, c^{2}-1$, and $(c-1)^{2}(c+2)>0$. B is never positive definite (determinants $d-4$ and $-4 d+12$ are never both positive).
19: All cross terms are $\boldsymbol{x}_{i}^{\mathrm{T}} \boldsymbol{x}_{j}=0$ because symmetric matrices have orthogonal eigenvectors. So positive eigenvalues \Rightarrow positive energy.
20: (a) The determinant is positive; all $\lambda>0$ (b) All projection matrices except I are singular (c) The diagonal entries of D are its eigenvalues (d) $A=-I$ has det $=+1$ when n is even.
22: $R=\frac{\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]}{\sqrt{2}}\left[\begin{array}{rr}\sqrt{9} & \\ & \sqrt{1}\end{array}\right] \frac{\left[\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right]}{\sqrt{2}}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right] ; R=Q\left[\begin{array}{ll}4 & 0 \\ 0 & 2\end{array}\right] Q^{\mathrm{T}}=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]$.
26: The Cholesky factors $C=(L \sqrt{D})^{\mathrm{T}}=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2\end{array}\right]$ and $C=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & \sqrt{5}\end{array}\right]$ have square roots of the pivots from D. Note again $C^{\mathrm{T}} C=L D L^{\mathrm{T}}=A$.
33: A product $A B$ of symmetric positive definite matrices comes into many applications. The "generalized" eigenvalue problem $K \boldsymbol{x}=\lambda M \boldsymbol{x}$ has $A B=M^{-1} K$. (often we use $\operatorname{eig}(K, M)$ without actually inverting M.) All eigenvalues λ are positive:

$$
A B \boldsymbol{x}=\lambda \boldsymbol{x} \text { gives }(B \boldsymbol{x})^{\mathrm{T}} A B \boldsymbol{x}=(B \boldsymbol{x})^{\mathrm{T}} \lambda x . \text { Then } \lambda=\boldsymbol{x}^{\mathrm{T}} B^{\mathrm{T}} A B \boldsymbol{x} / \boldsymbol{x}^{\mathrm{T}} B \boldsymbol{x}>0 .
$$

6.6:

2: $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]$ is similar to $B=\left[\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right]=M^{-1} A M$ with $M=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
5: $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$ are similar (they all have eigenvalues 1 and 0).
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is by itself and also $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ is by itself with eigenvalues 1 and -1 .
8: $\begin{aligned} & \text { Same } \Lambda \\ & \text { Same } S\end{aligned} \quad$ But $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right] \begin{aligned} & \text { have the same line of eigenvectors } \\ & \text { and the same eigenvalues } \lambda=0,0 \text {. }\end{aligned}$
12: If $M^{-1} J M=K$ then $J M=\left[\begin{array}{cccc}m_{21} & m_{22} & m_{23} & m_{24} \\ 0 & \mathbf{0} & \mathbf{0} & 0 \\ m_{41} & m_{42} & m_{43} & m_{44} \\ 0 & 0 & 0 & 0\end{array}\right]=M K=\left[\begin{array}{cccc}\mathbf{0} & m_{12} & m_{13} & \mathbf{0} \\ 0 & m_{22} & m_{23} & 0 \\ 0 & m_{32} & m_{33} & 0 \\ 0 & m_{42} & m_{43} & 0\end{array}\right]$.
That means $m_{21}=m_{22}=m_{23}=m_{24}=0 . M$ is not invertible, J not similar to K.
21: J^{2} has three 1 's down the second superdiagonal, and two independent eigenvectors for $\lambda=0$. Its 5 by 5 Jordan form is $\left[\begin{array}{ll}J_{3} & \\ & J_{2}\end{array}\right]$ with $J_{3}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$ and $J_{2}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.

