18.06 Solutions to PSet 7

8.3:

3: $\lambda = 1$ and .8, $\boldsymbol{x} = (1,0)$; 1 and -.8, $\boldsymbol{x} = (\frac{5}{9}, \frac{4}{9})$; 1, $\frac{1}{4}$, and $\frac{1}{4}$, $\boldsymbol{x} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$. **4:** A^{T} always has the eigenvector $(1, 1, \ldots, 1)$ for $\lambda = 1$, because each row of A^{T} adds to 1. (Note again that many authors use row vectors multiplying Markov matrices. So they transpose our form of A.) **7:** $(5)^{k} \rightarrow 0$ gives $A^{k} \rightarrow A^{\infty}$, and $A^{\infty} = [.6 + .4a - .6 - .6a]$ with $a \leq 1$

7: $(.5)^k \to 0$ gives $A^k \to A^\infty$; any $A = \begin{bmatrix} .6 + .4a & .6 - .6a \\ .4 - .4a & .4 + .6a \end{bmatrix}$ with $\begin{array}{c} a \leq 1 \\ .4 + .6a \geq 0 \end{array}$ **12:** B has $\lambda = 0$ and -.5 with $\boldsymbol{x}_1 = (.3, .2)$ and $\boldsymbol{x}_2 = (-1, 1)$; A has $\lambda = 1$ so A - I has $\lambda = 0$. $e^{-.5t}$ approaches zero and the solution approaches $c_1 e^{0t} \boldsymbol{x}_1 = c_1 \boldsymbol{x}_1$. **15:** The first two A's have $\lambda_{\max} < 1$; $\boldsymbol{p} = \begin{bmatrix} 8 \\ 6 \end{bmatrix}$ and $\begin{bmatrix} 130 \\ 32 \end{bmatrix}$; $I - \begin{bmatrix} .5 & 1 \\ .5 & 0 \end{bmatrix}$ has no inverse. **16:** $\lambda = 1$ (Markov), 0 (singular), .2 (from trace). Steady state (.3, .3, .4) and (30, 30, 40).

6.3:

4:
$$d(v+w)/dt = (w-v) + (v-w) = 0$$
, so the total $v + w$ is constant. $A = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$
has $\lambda_1 = 0$
 $\lambda_2 = -2$ with $x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $x_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$; $v(1) = 20 + 10e^{-2}$ $v(\infty) = 20$
7: A projection matrix has eigenvalues $\lambda = 1$ and $\lambda = 0$. Eigenvectors $Px = x$ fill the subspace that P projects onto: here $x = (1, 1)$. Eigenvectors $Px = 0$ fill the perpendicular subspace: here $x = (1, -1)$. For the solution to $u' = -Pu$.

$$\boldsymbol{u}(0) = \begin{bmatrix} 3\\1 \end{bmatrix} = \begin{bmatrix} 2\\2 \end{bmatrix} + \begin{bmatrix} 1\\-1 \end{bmatrix} \qquad \boldsymbol{u}(t) = e^{-t} \begin{bmatrix} 2\\2 \end{bmatrix} + e^{0t} \begin{bmatrix} 1\\-1 \end{bmatrix} \text{ approaches } \begin{bmatrix} 1\\-1 \end{bmatrix}$$

12: $A = \begin{bmatrix} 0 & 1 \\ -9 & 6 \end{bmatrix}$ has trace 6, det 9, $\lambda = 3$ and 3 with *one* independent eigenvector (1, 3). **14:** When A is skew-symmetric, $\|u(t)\| = \|e^{At}u(0)\|$ is $\|u(0)\|$. So e^{At} is *orthogonal*. **17:** (a) $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$. These show the unstable cases (a) $\lambda_1 < 0$ and $\lambda_2 > 0$ (b) $\lambda_1 > 0$ and $\lambda_2 > 0$ (c) $\lambda = a \pm ib$ with a > 0 **21:** $\begin{bmatrix} 1 & 4 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 0 & -1 \end{bmatrix}; \begin{bmatrix} 1 & 4 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} e^t & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} e^t & 4e^t - 4 \\ 0 & 1 \end{bmatrix}.$ **22:** $A^2 = A$ gives $e^{At} = I + At + \frac{1}{2}At^2 + \frac{1}{6}At^3 + \dots = I + (e^t - 1)A = \begin{bmatrix} e^t & e^t - 1 \\ 0 & 1 \end{bmatrix}.$ **26:** (a) The inverse of e^{At} is e^{-At} (b) If $Ax = \lambda x$ then $e^{At}x = e^{\lambda t}x$ and $e^{\lambda t} \neq 0$. To see $e^{At}x$, write $(I + At + \frac{1}{2}A^2t^2 + \dots)x = (1 + \lambda t + \frac{1}{2}\lambda^2t^2 + \dots)x = e^{\lambda t}x.$