18.06 Solutions to PSet 7

8.3:

3: $\lambda=1$ and $.8, \boldsymbol{x}=(1,0) ; 1$ and $-.8, \boldsymbol{x}=\left(\frac{5}{9}, \frac{4}{9}\right) ; 1, \frac{1}{4}$, and $\frac{1}{4}, \boldsymbol{x}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$.
4: A^{T} always has the eigenvector $(1,1, \ldots, 1)$ for $\lambda=1$, because each row of A^{T} adds to

1. (Note again that many authors use row vectors multiplying Markov matrices. So they transpose our form of A.)
7: $(.5)^{k} \rightarrow 0$ gives $A^{k} \rightarrow A^{\infty}$; any $A=\left[\begin{array}{ll}.6+.4 a & .6-.6 a \\ .4-.4 a & .4+.6 a\end{array}\right]$ with $\begin{gathered}a \leq 1 \\ .4+.6 a \geq 0\end{gathered}$
12: B has $\lambda=0$ and -.5 with $\boldsymbol{x}_{1}=(.3, .2)$ and $\boldsymbol{x}_{2}=(-1,1) ; A$ has $\lambda=1$ so $A-I$ has $\lambda=0$. $e^{-.5 t}$ approaches zero and the solution approaches $c_{1} e^{0 t} \boldsymbol{x}_{1}=c_{1} \boldsymbol{x}_{1}$.
15: The first two A 's have $\lambda_{\max }<1 ; \boldsymbol{p}=\left[\begin{array}{l}8 \\ 6\end{array}\right]$ and $\left[\begin{array}{r}130 \\ 32\end{array}\right] ; I-\left[\begin{array}{ll}.5 & 1 \\ .5 & 0\end{array}\right]$ has no inverse.
16: $\lambda=1$ (Markov), 0 (singular), 2 (from trace). Steady state $(.3, .3, .4)$ and (30, 30, 40).

6.3:

4: $d(v+w) / d t=(w-v)+(v-w)=0$, so the total $v+w$ is constant. $A=\left[\begin{array}{rr}-1 & 1 \\ 1 & -1\end{array}\right]$ has $\begin{aligned} & \lambda_{1}=0 \\ & \lambda_{2}=-2\end{aligned}$ with $\boldsymbol{x}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \boldsymbol{x}_{2}=\left[\begin{array}{r}1 \\ -1\end{array}\right] ; \quad \begin{array}{rl}v(1)=20+10 e^{-2} & v(\infty)=20 \\ w(1)=20-10 e^{-2} & w(\infty)=20\end{array}$
7: A projection matrix has eigenvalues $\lambda=1$ and $\lambda=0$. Eigenvectors $P \boldsymbol{x}=\boldsymbol{x}$ fill the subspace that P projects onto: here $\boldsymbol{x}=(1,1)$. Eigenvectors $P \boldsymbol{x}=\mathbf{0}$ fill the perpendicular subspace: here $\boldsymbol{x}=(1,-1)$. For the solution to $\boldsymbol{u}^{\prime}=-P \boldsymbol{u}$,

$$
\boldsymbol{u}(0)=\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right]+\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \quad \boldsymbol{u}(t)=e^{-t}\left[\begin{array}{l}
2 \\
2
\end{array}\right]+e^{0 t}\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \text { approaches }\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

12: $A=\left[\begin{array}{rr}0 & 1 \\ -9 & 6\end{array}\right]$ has trace 6 , det $9, \lambda=3$ and 3 with one independent eigenvector $(1,3)$.
14: When A is skew-symmetric, $\|\boldsymbol{u}(t)\|=\left\|e^{A t} \boldsymbol{u}(0)\right\|$ is $\|\boldsymbol{u}(0)\|$. So $e^{A t}$ is orthogonal.
17: (a) $\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$
(b) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
(c) $\left[\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right]$. These show the unstable cases
$\begin{array}{lll}\text { (a) } \lambda_{1}<0 \text { and } \lambda_{2}>0 & \text { (b) } \lambda_{1}>0 \text { and } \lambda_{2}>0 & \text { (c) } \lambda=a \pm i b \text { with } a>0\end{array}$
21: $\left[\begin{array}{ll}1 & 4 \\ 0 & 0\end{array}\right]=\left[\begin{array}{rr}1 & 4 \\ 0 & -1\end{array}\right]\left[\begin{array}{ll}\mathbf{1} & 0 \\ 0 & \mathbf{0}\end{array}\right]\left[\begin{array}{rr}1 & 4 \\ 0 & -1\end{array}\right] ;\left[\begin{array}{rr}1 & 4 \\ 0 & -1\end{array}\right]\left[\begin{array}{cc}\boldsymbol{e}^{t} & 0 \\ 0 & \mathbf{1}\end{array}\right]\left[\begin{array}{rr}1 & 4 \\ 0 & -1\end{array}\right]=\left[\begin{array}{cc}e^{t} & 4 e^{t}-4 \\ 0 & 1\end{array}\right]$.
22: $A^{2}=A$ gives $e^{A t}=I+A t+\frac{1}{2} \boldsymbol{A} \boldsymbol{t}^{2}+\frac{1}{6} A t^{3}+\cdots=I+\left(e^{t}-1\right) A=\left[\begin{array}{cc}e^{t} & e^{t}-1 \\ 0 & 1\end{array}\right]$.
26: (a) The inverse of $e^{A t}$ is $e^{-A t} \quad$ (b) If $A \boldsymbol{x}=\lambda \boldsymbol{x}$ then $e^{A t} \boldsymbol{x}=e^{\lambda t} \boldsymbol{x}$ and $e^{\lambda t} \neq 0$. To see $e^{A t} \boldsymbol{x}$, write $\left(I+A t+\frac{1}{2} A^{2} t^{2}+\cdots\right) \boldsymbol{x}=\left(1+\lambda t+\frac{1}{2} \lambda^{2} t^{2}+\cdots\right) \boldsymbol{x}=e^{\lambda t} \boldsymbol{x}$.

