18.06 Solutions to PSet 6

3: (a) False: det(I + I) is not 1 + 1 (b) True: The product rule extends to ABC (use it twice) (c) False: det(4A) is $4^n \det A$ (d) False: $A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $AB - BA = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is invertible. 15: The first determinant is 0, the second is $1 - 2t^2 + t^4 = (1 - t^2)^2$. 18: $\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = \begin{vmatrix} 1 & a & a^2 \\ 0 & b - a & b^2 - a^2 \\ 0 & c - a & c^2 - a^2 \end{vmatrix} = \begin{vmatrix} b - a & b^2 - a^2 \\ c - a & c^2 - a^2 \end{vmatrix}$ (to reach 2 by 2, eliminate a and a^2 in row 1 by column operations). Factor out b - a and c - a from the 2 by 2: $(b - a)(c - a) \begin{vmatrix} 1 & b + a \\ 1 & c + a \end{vmatrix} = (b - a)(c - a)(c - b).$ 22: det(A) = 3, det(A^{-1}) = $\frac{1}{3}$, det(A - λI) = $\lambda^2 - 4\lambda + 3$. The numbers $\lambda = 1$ and $\lambda = 3$ give det(A - λI) = 0. Note to instructor: If you discuss this exercise, you can explain that this is the reason determinants come before eigenvalues. Identify $\lambda = 1$ and

5.2:

 $\lambda = 3$ as the eigenvalues of A.

1: det A = 1+18+12-9-4-6 = 12, rows are independent; det B = 0, row 1+row 2 = row 3; det C = -1, independent rows (det C has one term, odd permutation)

5: Four zeros in the same row guarantee det = 0. A = I has 12 zeros (maximum with det $\neq 0$).

8: Some term $a_{1\alpha}a_{2\beta}\cdots a_{n\omega}$ in the big formula is not zero! Move rows 1, 2, ..., *n* into rows $\alpha, \beta, \ldots, \omega$. Then these nonzero *a*'s will be on the main diagonal.

24: (a) All L's have det = 1; det $U_k = \det A_k = 2, 6, -6$ for k = 1, 2, 3 (b) Pivots $2, \frac{3}{2}, \frac{-1}{3}$.

25: Problem 23 gives det $\begin{bmatrix} I & 0 \\ -CA^{-1} & I \end{bmatrix} = 1$ and det $\begin{bmatrix} A & B \\ C & D \end{bmatrix} = |A|$ times $|D - CA^{-1}B|$ which is $|AD - ACA^{-1}B|$. If AC = CA this is $|AD - CAA^{-1}B| = \det(AD - CB)$.

5.3:

4: (a) $x_1 = \det([\mathbf{b} \ \mathbf{a}_2 \ \mathbf{a}_3])/\det A$, if $\det A \neq 0$ (b) The determinant is linear in its first column so $x_1|\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3| + x_2|\mathbf{a}_2 \ \mathbf{a}_2 \ \mathbf{a}_3| + x_3|\mathbf{a}_3 \ \mathbf{a}_2 \ \mathbf{a}_3|$. The last two determinants are zero because of repeated columns, leaving $x_1|\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3|$ which is $x_1 \det A$. $\begin{bmatrix} 1 & -\frac{2}{3} & 0 \end{bmatrix} \begin{bmatrix} 3 & 2 & 1 \end{bmatrix}$

6: (a)	$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$	$-\frac{1}{3}$ $-\frac{7}{3}$	0 1	(b) $\frac{1}{4}$	$\begin{vmatrix} 3\\2\\1 \end{vmatrix}$	$\frac{2}{4}$	$\begin{bmatrix} 1\\2\\3\end{bmatrix}$	An invertible symmetric matrix has a symmetric inverse.
	L	3		1	L		_	

23:
$$A^{\mathrm{T}}A = \begin{bmatrix} a^{\mathrm{T}} \\ b^{\mathrm{T}} \\ c^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} a & b & c \end{bmatrix} = \begin{bmatrix} a^{\mathrm{T}}a & 0 & 0 \\ 0 & b^{\mathrm{T}}b & 0 \\ 0 & 0 & c^{\mathrm{T}}c \end{bmatrix}$$
 has $\det A^{\mathrm{T}}A = (||a||||b||||c||)^2$
39: $AC^{\mathrm{T}} = (\det A)I$ gives $(\det A)(\det C) = (\det A)^n$. Then $\det A = (\det C)^{1/3}$ with $n = 4$. With $\det A^{-1} = 1/\det A$, construct A^{-1} using the cofactors. *Invert to find A*.

6.1:

3: A has $\lambda_1 = 2$ and $\lambda_2 = -1$ (check trace and determinant) with $x_1 = (1, 1)$ and $x_2 = (2, -1)$. A^{-1} has the same eigenvectors, with eigenvalues $1/\lambda = \frac{1}{2}$ and -1. 9: (a) Multiply by A: $A(Ax) = A(\lambda x) = \lambda Ax$ gives $A^2x = \lambda^2 x$ (b) Multiply by

9: (a) Multiply by A: $A(Ax) = A(\lambda x) = \lambda Ax$ gives $A^2x = \lambda^2 x^2$ (b) Multiply by A^{-1} : $x = A^{-1}Ax = A^{-1}\lambda x = \lambda A^{-1}x$ gives $A^{-1}x = \frac{1}{\lambda}x$ (c) Add Ix = x: $(A+I)x = (\lambda + 1)x$.

12: The projection matrix P has $\lambda = 1, 0, 1$ with eigenvectors (1, 2, 0), (2, -1, 0), (0, 0, 1). Add the first and last vectors: (1, 2, 1) also has $\lambda = 1$. Note $P^2 = P$ leads to $\lambda^2 = \lambda$ so $\lambda = 0$ or 1.

27: A has rank 1 with eigenvalues 0, 0, 0, 4 (the 4 comes from the trace of A). C has rank 2 (ensuring two zero eigenvalues) and (1, 1, 1, 1) is an eigenvector with $\lambda = 2$. With trace 4, the other eigenvalue is also $\lambda = 2$, and its eigenvector is (1, -1, 1, -1).

6.2:

$$\mathbf{1:} \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}; \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} \frac{3}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix}.$$

$$\mathbf{19:} B^{k} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 4 \end{bmatrix}^{k} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 5^{k} & 5^{k} - 4^{k} \\ 0 & 4^{k} \end{bmatrix}.$$