18.06 Solutions to PSet 6

5.1:

3: (a) False: $\operatorname{det}(I+I)$ is not $1+1$ (b) True: The product rule extends to $A B C$ (use it twice)
(c) False: $\operatorname{det}(4 A)$ is $4^{n} \operatorname{det} A$
(d) False: $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, $A B-B A=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$ is invertible.
15: The first determinant is 0 , the second is $1-2 t^{2}+t^{4}=\left(1-t^{2}\right)^{2}$.
18: $\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=\left|\begin{array}{ccc}1 & a & a^{2} \\ 0 & b-a & b^{2}-a^{2} \\ 0 & c-a & c^{2}-a^{2}\end{array}\right|=\left|\begin{array}{cc}b-a & b^{2}-a^{2} \\ c-a & c^{2}-a^{2}\end{array}\right|$ (to reach 2 by 2, eliminate a and a^{2} in row 1 by column operations). Factor out $b-a$ and $c-a$ from the 2 by 2: $(b-a)(c-a)\left|\begin{array}{ll}1 & b+a \\ 1 & c+a\end{array}\right|=(b-a)(c-a)(c-b)$.
22: $\operatorname{det}(A)=3, \operatorname{det}\left(A^{-1}\right)=\frac{1}{3}, \operatorname{det}(A-\lambda I)=\lambda^{2}-4 \lambda+3$. The numbers $\lambda=1$ and $\lambda=3$ give $\operatorname{det}(A-\lambda I)=0$. Note to instructor: If you discuss this exercise, you can explain that this is the reason determinants come before eigenvalues. Identify $\lambda=1$ and $\lambda=3$ as the eigenvalues of A.

5.2:

1: $\operatorname{det} A=1+18+12-9-4-6=12$, rows are independent; $\operatorname{det} B=0$, row $1+$ row $2=$ row 3 ; $\operatorname{det} C=-1$, independent rows ($\operatorname{det} C$ has one term, odd permutation)
5: Four zeros in the same row guarantee det $=0 . A=I$ has 12 zeros (maximum with $\operatorname{det} \neq 0$).
8: Some term $a_{1 \alpha} a_{2 \beta} \cdots a_{n \omega}$ in the big formula is not zero! Move rows $1,2, \ldots, n$ into rows $\alpha, \beta, \ldots, \omega$. Then these nonzero a 's will be on the main diagonal.
24: (a) All L 's have $\operatorname{det}=1$; $\operatorname{det} U_{k}=\operatorname{det} A_{k}=2,6,-6$ for $k=1,2,3 \quad$ (b) Pivots $2, \frac{3}{2}, \frac{-1}{3}$.
25: Problem 23 gives $\operatorname{det}\left[\begin{array}{rr}I & 0 \\ -C A^{-1} & I\end{array}\right]=1$ and $\operatorname{det}\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]=|A|$ times $\mid D-$ $C A^{-1} B \mid$ which is $\left|A D-A C A^{-1} B\right|$. If $A C=C A$ this is $\left|A D-C A A^{-1} B\right|=\operatorname{det}(A D-$ $C B)$.

5.3:

4: (a) $x_{1}=\operatorname{det}\left(\left[\begin{array}{lll}\boldsymbol{b} & \boldsymbol{a}_{2} & \boldsymbol{a}_{3}\end{array}\right]\right) / \operatorname{det} A$, if $\operatorname{det} A \neq 0 \quad$ (b) The determinant is linear in its first column so $x_{1}\left|\boldsymbol{a}_{1} \boldsymbol{a}_{2} \boldsymbol{a}_{3}\right|+x_{2}\left|\boldsymbol{a}_{2} \boldsymbol{a}_{2} \boldsymbol{a}_{3}\right|+x_{3}\left|\boldsymbol{a}_{3} \boldsymbol{a}_{2} \boldsymbol{a}_{3}\right|$. The last two determinants are zero because of repeated columns, leaving $x_{1}\left|\boldsymbol{a}_{1} \boldsymbol{a}_{2} \boldsymbol{a}_{3}\right|$ which is $x_{1} \operatorname{det} A$.
6: (a) $\left[\begin{array}{rrr}1 & -\frac{2}{3} & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & -\frac{7}{3} & 1\end{array}\right] \quad$ (b) $\frac{1}{4}\left[\begin{array}{lll}3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3\end{array}\right] . \begin{aligned} & \text { An invertible symmetric matrix } \\ & \text { has a symmetric inverse. }\end{aligned}$

10: Take the determinant of $A C^{\mathrm{T}}=(\operatorname{det} A) I$. The left side gives $\operatorname{det} A C^{\mathrm{T}}=(\operatorname{det} A)(\operatorname{det} C)$ while the right side gives $(\operatorname{det} A)^{n}$. Divide by det A to reach $\operatorname{det} C=(\operatorname{det} A)^{n-1}$.
23: $A^{\mathrm{T}} A=\left[\begin{array}{l}\boldsymbol{a}^{\mathrm{T}} \\ \boldsymbol{b}^{\mathrm{T}} \\ \boldsymbol{c}^{\mathrm{T}}\end{array}\right]\left[\begin{array}{lll}\boldsymbol{a} & \boldsymbol{b} & \boldsymbol{c}\end{array}\right]=\left[\begin{array}{ccc}\boldsymbol{a}^{\mathrm{T}} \boldsymbol{a} & 0 & 0 \\ 0 & \boldsymbol{b}^{\mathrm{T}} \boldsymbol{b} & 0 \\ 0 & 0 & \boldsymbol{c}^{\mathrm{T}} \boldsymbol{c}\end{array}\right]$ has $\begin{array}{ll}\operatorname{det} A^{\mathrm{T}} A=(\|a\|\|b\|\|c\|)^{2} \\ \operatorname{det} A & = \pm\|a\|\|b\|\|c\|\end{array}$
39: $A C^{\mathrm{T}}=(\operatorname{det} A) I$ gives $(\operatorname{det} A)(\operatorname{det} C)=(\operatorname{det} A)^{n}$. Then $\operatorname{det} A=(\operatorname{det} C)^{1 / 3}$ with $n=4$. With $\operatorname{det} A^{-1}=1 / \operatorname{det} A$, construct A^{-1} using the cofactors. Invert to find A.

6.1:

3: A has $\lambda_{1}=2$ and $\lambda_{2}=-1$ (check trace and determinant) with $\boldsymbol{x}_{1}=(1,1)$ and $\boldsymbol{x}_{2}=(2,-1) . A^{-1}$ has the same eigenvectors, with eigenvalues $1 / \lambda=\frac{1}{2}$ and -1 .
9: (a) Multiply by A : $A(A \boldsymbol{x})=A(\lambda \boldsymbol{x})=\lambda A \boldsymbol{x}$ gives $A^{2} \boldsymbol{x}=\lambda^{2} \boldsymbol{x} \quad$ (b) Multiply by $A^{-1}: \boldsymbol{x}=A^{-1} A \boldsymbol{x}=A^{-1} \lambda \boldsymbol{x}=\lambda A^{-1} \boldsymbol{x}$ gives $A^{-1} \boldsymbol{x}=\frac{1}{\lambda} \boldsymbol{x} \quad$ (c) Add $I \boldsymbol{x}=\boldsymbol{x}$: $(A+I) \boldsymbol{x}=(\boldsymbol{\lambda}+\mathbf{1}) \boldsymbol{x}$.
12: The projection matrix P has $\lambda=1,0,1$ with eigenvectors $(1,2,0),(2,-1,0),(0,0,1)$. Add the first and last vectors: $(1,2,1)$ also has $\lambda=1$. Note $P^{2}=P$ leads to $\lambda^{2}=\lambda$ so $\lambda=0$ or 1 .
27: A has rank 1 with eigenvalues $0,0,0,4$ (the 4 comes from the trace of A). C has rank 2 (ensuring two zero eigenvalues) and $(1,1,1,1)$ is an eigenvector with $\lambda=2$. With trace 4 , the other eigenvalue is also $\lambda=2$, and its eigenvector is $(1,-1,1,-1)$.

6.2:

1: $\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]\left[\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right] ;\left[\begin{array}{ll}1 & 1 \\ 3 & 3\end{array}\right]=\left[\begin{array}{rr}1 & 1 \\ -1 & 3\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 4\end{array}\right]\left[\begin{array}{rr}\frac{3}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{1}{4}\end{array}\right]$.
19: $B^{k}=\left[\begin{array}{rr}1 & 1 \\ 0 & -1\end{array}\right]\left[\begin{array}{rr}5 & 0 \\ 0 & 4\end{array}\right]^{k}\left[\begin{array}{rr}1 & 1 \\ 0 & -1\end{array}\right]=\left[\begin{array}{cc}5^{k} & 5^{k}-4^{k} \\ 0 & 4^{k}\end{array}\right]$.

