18.06 Solutions to PSet 5

4.2:

11: (a) $\boldsymbol{p}=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} \boldsymbol{b}=(2,3,0), \boldsymbol{e}=(0,0,4), A^{\mathrm{T}} \boldsymbol{e}=\mathbf{0}$ (b) $\boldsymbol{p}=(4,4,6), \boldsymbol{e}=\mathbf{0}$.
12: $P_{1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]=$ projection matrix onto the column space of A (the $x y$ plane) $P_{2}=\left[\begin{array}{lll}0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 0 & 1\end{array}\right]=\begin{aligned} & \text { Projection matrix onto the second column space. } \\ & \text { Certainly }\left(P_{2}\right)^{2}=P_{2} .\end{aligned}$
17: If $P^{2}=P$ then $(\boldsymbol{I}-\boldsymbol{P})^{\mathbf{2}}=(I-P)(I-P)=I-P I-I P+P^{2}=\boldsymbol{I}-\boldsymbol{P}$. When P projects onto the column space, $I-P$ projects onto the left nullspace.
26: A^{-1} exists since the rank is $r=m$. Multiply $A^{2}=A$ by A^{-1} to get $A=I$.
32: Since $P_{1} \boldsymbol{b}$ is in $\boldsymbol{C}(A), P_{2}\left(P_{1} \boldsymbol{b}\right)$ equals $P_{1} \boldsymbol{b}$. So $P_{2} P_{1}=P_{1}=\boldsymbol{a} \boldsymbol{a}^{\mathrm{T}} / \boldsymbol{a}^{\mathrm{T}} \boldsymbol{a}$ where $\boldsymbol{a}=(1,2,0)$.

4.3:

9: $\begin{aligned} & \text { Parabola } \\ & \text { Project } \boldsymbol{b} \\ & \text { 4D to 3D }\end{aligned}\left[\begin{array}{rrr}1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 3 & 9 \\ 1 & 4 & 16\end{array}\right]\left[\begin{array}{l}C \\ D \\ E\end{array}\right]=\left[\begin{array}{r}0 \\ 8 \\ 8 \\ 20\end{array}\right] . A^{\mathrm{T}} A \widehat{\boldsymbol{x}}=\left[\begin{array}{rrr}4 & 8 & 26 \\ 8 & 26 & 92 \\ 26 & 92 & 338\end{array}\right]\left[\begin{array}{l}C \\ D \\ E\end{array}\right]=\left[\begin{array}{r}36 \\ 112 \\ 400\end{array}\right]$.
12: (a) $\boldsymbol{a}=(1, \ldots, 1)$ has $\boldsymbol{a}^{\mathrm{T}} \boldsymbol{a}=m, \boldsymbol{a}^{\mathrm{T}} \boldsymbol{b}=b_{1}+\cdots+b_{m}$. Therefore $\widehat{x}=\boldsymbol{a}^{\mathrm{T}} \boldsymbol{b} / m$ is the mean of the b 's (b) $\boldsymbol{e}=\boldsymbol{b}-\widehat{x} \boldsymbol{a} \quad \boldsymbol{b}=(1,2, b)\|\boldsymbol{e}\|^{2}=\sum_{i=1}^{m}\left(b_{i}-\widehat{x}\right)^{2}=$ variance
(c) $\quad \begin{aligned} & \boldsymbol{p}=(3,3,3) \\ & \boldsymbol{e}=(-2,-1,3)\end{aligned} \boldsymbol{p}^{\mathrm{T}} \boldsymbol{e}=0 . P=\frac{1}{3}\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$.

17: $\left[\begin{array}{rr}1 & -1 \\ 1 & 1 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}C \\ D\end{array}\right]=\left[\begin{array}{r}7 \\ 7 \\ 21\end{array}\right]$. The solution $\widehat{\boldsymbol{x}}=\left[\begin{array}{l}\mathbf{9} \\ \mathbf{4}\end{array}\right]$ comes from $\left[\begin{array}{ll}3 & 2 \\ 2 & 6\end{array}\right]\left[\begin{array}{l}C \\ D\end{array}\right]=\left[\begin{array}{l}35 \\ 42\end{array}\right]$.
28: Only 1 plane contains $\mathbf{0}, \boldsymbol{a}_{1}, \boldsymbol{a}_{2}$ unless $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}$ are dependent. Same test for $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}$.

4.4:

4: (a) $Q=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right], Q Q^{\mathrm{T}}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right] \neq I$. Any Q with $n<m$ has $Q Q^{\mathrm{T}} \neq I$.
(b) $(1,0)$ and $(0,0)$ are orthogonal, not independent. Nonzero orthogonal vectors are independent. (c) Starting from $\boldsymbol{q}_{1}=(1,1,1) / \sqrt{3}$ my favorite is $\boldsymbol{q}_{2}=(1,-1,0) / \sqrt{2}$ and $\boldsymbol{q}_{3}=(1,1,-2) / \sqrt{b}$.
12: (a) Orthonormal \boldsymbol{a} 's: $\boldsymbol{a}_{1}^{\mathrm{T}} \boldsymbol{b}=\boldsymbol{a}_{1}^{\mathrm{T}}\left(x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+x_{3} \boldsymbol{a}_{3}\right)=x_{1}\left(\boldsymbol{a}_{1}^{\mathrm{T}} \boldsymbol{a}_{1}\right)=x_{1}$
(b) Orthogonal \boldsymbol{a} 's: $\boldsymbol{a}_{1}^{\mathrm{T}} \boldsymbol{b}=\boldsymbol{a}_{1}^{\mathrm{T}}\left(x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+x_{3} \boldsymbol{a}_{3}\right)=x_{1}\left(\boldsymbol{a}_{1}^{\mathrm{T}} \boldsymbol{a}_{1}\right)$. Therefore $x_{1}=$ $\boldsymbol{a}_{1}^{\mathrm{T}} \boldsymbol{b} / \boldsymbol{a}_{1}^{\mathrm{T}} \boldsymbol{a}_{1}$
(c) x_{1} is the first component of A^{-1} times \boldsymbol{b}.

18: $\boldsymbol{A}=\boldsymbol{a}=(1,-1,0,0) ; \boldsymbol{B}=\boldsymbol{b}-\boldsymbol{p}=\left(\frac{1}{2}, \frac{1}{2},-1,0\right) ; \boldsymbol{C}=\boldsymbol{c}-\boldsymbol{p}_{A}-\boldsymbol{p}_{B}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3},-1\right)$. Notice the pattern in those orthogonal $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$. In $\mathbf{R}^{5}, \boldsymbol{D}$ would be $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4},-1\right)$.
19: If $A=Q R$ then $A^{\mathrm{T}} A=R^{\mathrm{T}} Q^{\mathrm{T}} Q R=R^{\mathrm{T}} R=$ lower triangular times upper triangular (this Cholesky factorization of $A^{\mathrm{T}} A$ uses the same R as Gram-Schmidt!). The example has $A=\left[\begin{array}{rr}-1 & 1 \\ 2 & 1 \\ 2 & 4\end{array}\right]=\frac{1}{3}\left[\begin{array}{rr}-1 & 2 \\ 2 & -1 \\ 2 & 2\end{array}\right]\left[\begin{array}{ll}3 & 3 \\ 0 & 3\end{array}\right]=Q R$ and the same R appears in $A^{\mathrm{T}} A=\left[\begin{array}{rr}9 & 9 \\ 9 & 18\end{array}\right]=\left[\begin{array}{ll}3 & 0 \\ 3 & 3\end{array}\right]\left[\begin{array}{ll}3 & 3 \\ 0 & 3\end{array}\right]=R^{\mathrm{T}} R$.
24: (a) One basis for the subspace \boldsymbol{S} of solutions to $x_{1}+x_{2}+x_{3}-x_{4}=0$ is $\boldsymbol{v}_{1}=$ $(1,-1,0,0), \boldsymbol{v}_{2}=(1,0,-1,0), \boldsymbol{v}_{3}=(1,0,0,1) \quad$ (b) Since \boldsymbol{S} contains solutions to $(1,1,1,-1)^{\mathrm{T}} \boldsymbol{x}=0$, a basis for \boldsymbol{S}^{\perp} is $(1,1,1,-1) \quad$ (c) Split $(1,1,1,1)=\boldsymbol{b}_{1}+\boldsymbol{b}_{2}$ by projection on \boldsymbol{S}^{\perp} and $\boldsymbol{S}: \boldsymbol{b}_{2}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)$ and $\boldsymbol{b}_{1}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{2}\right)$.

