18.06 Solutions to PSet 5

4.2:

11: (a) $p = A(A^{T}A)^{-1}A^{T}b = (2,3,0), e = (0,0,4), A^{T}e = 0$ (b) p = (4,4,6), e = 0. 12: $P_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ = projection matrix onto the column space of A (the xy plane) $P_{2} = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ = Projection matrix onto the second column space. Certainly $(P_{2})^{2} = P_{2}$. 17: If $P^{2} = P$ then $(I - P)^{2} = (I - P)(I - P) = I - PI - IP + P^{2} = I - P$. When P projects onto the column space, I - P projects onto the left nullspace. 26: A^{-1} exists since the rank is r = m. Multiply $A^{2} = A$ by A^{-1} to get A = I. 32: Since $P_{1}b$ is in $C(A), P_{2}(P_{1}b)$ equals $P_{1}b$. So $P_{2}P_{1} = P_{1} = aa^{T}/a^{T}a$ where a = (1, 2, 0).

4.3:

$$\begin{array}{c} \text{Parabola} \\ \text{9:} \quad \begin{array}{c} \text{Parabola} \\ \text{Project } \mathbf{b} \\ 4\text{D to 3D} \end{array} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{bmatrix} \begin{bmatrix} C \\ D \\ E \end{bmatrix} = \begin{bmatrix} 0 \\ 8 \\ 8 \\ 20 \end{bmatrix}. A^{\mathrm{T}}A\widehat{\mathbf{x}} = \begin{bmatrix} 4 & 8 & 26 \\ 8 & 26 & 92 \\ 26 & 92 & 338 \end{bmatrix} \begin{bmatrix} C \\ D \\ E \end{bmatrix} = \begin{bmatrix} 36 \\ 112 \\ 400 \end{bmatrix}.$$

12: (a) a = (1, ..., 1) has $a^{T}a = m$, $a^{T}b = b_{1} + \cdots + b_{m}$. Therefore $\hat{x} = a^{T}b/m$ is the mean of the b's (b) $e = b - \hat{x}a$ $b = (1, 2, b) ||e||^{2} = \sum_{i=1}^{m} (b_{i} - \hat{x})^{2}$ = variance n = (3, 3, 3)

(c)
$$p = (3, 3, 3)$$

 $e = (-2, -1, 3)$ $p^{\mathrm{T}}e = 0$. $P = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.
17: $\begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 7 \\ 7 \\ 21 \end{bmatrix}$. The solution $\hat{x} = \begin{bmatrix} 9 \\ 4 \end{bmatrix}$ comes from $\begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 35 \\ 42 \end{bmatrix}$.

28: Only 1 plane contains $0, a_1, a_2$ unless a_1, a_2 are *dependent*. Same test for a_1, \ldots, a_n .

4.4:

4: (a)
$$Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
, $QQ^{\mathrm{T}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \neq I$. Any Q with $n < m$ has $QQ^{\mathrm{T}} \neq I$.

(b) (1,0) and (0,0) are *orthogonal*, not *independent*. Nonzero orthogonal vectors *are* independent. (c) Starting from $q_1 = (1,1,1)/\sqrt{3}$ my favorite is $q_2 = (1,-1,0)/\sqrt{2}$ and $q_3 = (1,1,-2)/\sqrt{b}$.

12: (a) Orthonormal a's: $a_1^{\mathrm{T}}b = a_1^{\mathrm{T}}(x_1a_1 + x_2a_2 + x_3a_3) = x_1(a_1^{\mathrm{T}}a_1) = x_1$ (b) Orthogonal a's: $a_1^{\mathrm{T}}b = a_1^{\mathrm{T}}(x_1a_1 + x_2a_2 + x_3a_3) = x_1(a_1^{\mathrm{T}}a_1)$. Therefore $x_1 = a_1^{\mathrm{T}}b/a_1^{\mathrm{T}}a_1$ (c) x_1 is the first component of A^{-1} times **b**. **18:** $A = a = (1, -1, 0, 0); B = b - p = (\frac{1}{2}, \frac{1}{2}, -1, 0); C = c - p_A - p_B = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, -1).$ Notice the pattern in those orthogonal A, B, C. In \mathbb{R}^5 , D would be $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, -1).$ **19:** If A = QR then $A^T A = R^T Q^T QR = R^T R$ = lower triangular times upper triangular (this Cholesky factorization of $A^T A$ uses the same R as Gram-Schmidt!). The

angular (this Cholesky factorization of A A uses the same *R* as Gran-Schmidtly. The example has $A = \begin{bmatrix} -1 & 1 \\ 2 & 1 \\ 2 & 4 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -1 & 2 \\ 2 & -1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 3 \\ 0 & 3 \end{bmatrix} = QR$ and the same *R* appears in $A^{T}A = \begin{bmatrix} 9 & 9 \\ 9 & 18 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} 3 & 3 \\ 0 & 3 \end{bmatrix} = R^{T}R.$ 24: (a) One basis for the subspace *S* of solutions to $x_1 + x_2 + x_3 - x_4 = 0$ is $v_1 = (1 - 1 - 0 - 0)$ $x_1 = (1 - 0 - 1 - 0)$ $x_2 = (1 - 0 - 1 - 0)$ $x_3 = (1 - 0 - 1)$ (b) Since *S* contains solutions to

24. (a) One basis for the subspace S of solutions to $x_1 + x_2 + x_3 - x_4 = 0$ is $v_1 = (1, -1, 0, 0), v_2 = (1, 0, -1, 0), v_3 = (1, 0, 0, 1)$ (b) Since S contains solutions to $(1, 1, 1, -1)^{\mathrm{T}} x = 0$, a basis for S^{\perp} is (1, 1, 1, -1) (c) Split $(1, 1, 1, 1) = b_1 + b_2$ by projection on S^{\perp} and S: $b_2 = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2})$ and $b_1 = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{2})$.