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18.06 Solutions to PSet 4

3.5:

16: These bases are not unique! (a)(1, 1, 1, 1) for the space of all constant vectors
(c, c, c, c) (b) (1,−1, 0, 0), (1, 0,−1, 0), (1, 0, 0,−1) for the space of vectors with sum
of components =0 (c) (1,−1,−1, 0), (1,−1, 0,−1) for the space perpendicular to
(1, 1, 0, 0) and(1, 0, 1, 1) (d) The columns ofI are a basis for its column space, the
empty set is a basis (by convention) forN(I) = {zero vector}.
26:

(a)





1 0 0
0 0 0
0 0 0



 ,





0 0 0
0 1 0
0 0 0



 ,





0 0 0
0 0 0
0 0 1





(b) Add





0 1 0
1 0 0
0 0 0



 ,





0 0 1
0 0 0
1 0 0



,





0 0 0
0 0 1
0 1 0





(c)





0 1 0
−1 0 0

0 0 0



 ,





0 0 1
0 0 0
−1 0 0



 ,





0 0 0
0 0 1
0 −1 0



.

These are simple bases (among many others) for (a) diagonal matrices (b)symmetric
matrices (c) skew-symmetric matrices. The dimensions are3, 6, 3.

30:
[

−1 2 0
0 0 0

]

,

[

−1 0 2
0 0 0

]

,

[

0 0 0
−1 2 0

]

,

[

0 0 0
−1 0 2

]

.

41: I =





1
1

1





−





1
1

1



 +





1
1

1



 +





1
1

1





−





1
1

1



.
The sixP ’s
are dependent

.

Those five are independent: The4th hasP11 = 1 and cannot be a combination of the oth-
ers. Then the2nd cannot be (fromP32 = 1) and also5th (P32 = 1). Continuing, a nonzero
combination of all five could not be zero. Further challenge: How many independent4 by
4 permutation matrices?

3.6:

6: A: dim 2,2,2,1: Rows (0, 3, 3, 3) and (0, 1, 0, 1); columns(3, 0, 1) and (3, 0, 0);
nullspace(1, 0, 0, 0) and(0,−1, 0, 1); N(AT) (0, 1, 0). B: dim 1,1,0,2 Row space (1),
column space(1, 4, 5), nullspace: empty basis,N(AT) (−4, 1, 0) and(−5, 0, 1).
14: Row space basis can be the nonzero rows ofU : (1, 2, 3, 4), (0, 1, 2, 3), (0, 0, 1, 2);
nullspace basis(0, 1,−2, 1) as forU ; column space basis(1, 0, 0), (0, 1, 0), (0, 0, 1) (hap-
pen to haveC(A) = C(U) = R

3); left nullspace has empty basis.
16: If Av = 0 andv is a row ofA thenv · v = 0.
32: The key is equal row spaces. First row ofA = combination of the rows ofB: only
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possible combination (noticeI) is 1 (row 1 ofB). Same for each row soF = G.

8.2:

8: A =













−1 1 0 0
−1 0 1 0

0 −1 1 0
0 −1 0 1
0 0 −1 1













leads tox =









1
1
1
1









andy =













−1
1

−1
0
0













and













0
0
1

−1
1













solving

ATy = 0.
9: Elimination onAx = b always leads toyTb = 0 in the zero rows ofU and R:
−b1 + b2 − b3 = 0 and b3 − b4 + b5 = 0 (thosey’s are from Problem 8 in the left
nullspace). This is Kirchhoff’sVoltage Law around the twoloops.
12.a: The nullspace and rank ofATA andA are always the same.

4.1:

9: Ax is always in thecolumn space of A. If ATAx = 0 thenAx is also in the nullspace
of AT. SoAx is perpendicular to itself. Conclusion:Ax = 0 if ATAx = 0.
11: For A: The nullspace is spanned by(−2, 1), the row space is spanned by(1, 2). The
column space is the line through(1, 3) andN(AT) is the perpendicular line through(3,−1).
For B: The nullspace ofB is spanned by(0, 1), the row space is spanned by(1, 0). The
column space and left nullspace are the same as forA.
22: (1, 1, 1, 1) is a basis forP⊥. A =

[

1 1 1 1
]

hasP as its nullspace andP⊥ as
row space
33: Bothr’s orthogonal to bothn’s, bothc’s orthogonal to bothℓ’s, each pair independent.
All A’s with these subspaces have the form[c1 c2]M [r1 r2]

T for a2 by 2 invertibleM .

4.2:

16: 1

2
(1, 2,−1) + 3

2
(1, 0, 1) = (2, 1, 1). Sob is in the plane. Projection showsPb = b.


