18.06 Solutions to PSet 4

3.5:

16: These bases are not unique! (a) (1,1,1,1) for the space of all constant vectors (c, c, c, c) (b) (1, -1, 0, 0), (1, 0, -1, 0), (1, 0, 0, -1) for the space of vectors with sum of components = 0 (c) (1, -1, -1, 0), (1, -1, 0, -1) for the space perpendicular to (1, 1, 0, 0) and (1, 0, 1, 1) (d) The columns of I are a basis for its column space, the empty set is a basis (by convention) for $N(I) = \{\text{zero vector}\}.$ **26:**

(a)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
(b) Add $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$
(c) $\begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$

These are simple bases (among many others) for (a) diagonal matrices (b) symmetric matrices (c) skew-symmetric matrices. The dimensions are 3, 6, 3.

30:
$$\begin{bmatrix} -1 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, $\begin{bmatrix} -1 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 0 \\ -1 & 2 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 2 \end{bmatrix}$.
41: $I = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. The six *P*'s are dependent.

Those five are independent: The 4th has $P_{11} = 1$ and cannot be a combination of the others. Then the 2nd cannot be (from $P_{32} = 1$) and also 5th ($P_{32} = 1$). Continuing, a nonzero combination of all five could not be zero. Further challenge: How many independent 4 by 4 permutation matrices?

3.6:

6: A: dim **2**, **2**, **2**, **1**: Rows (0, 3, 3, 3) and (0, 1, 0, 1); columns (3, 0, 1) and (3, 0, 0); nullspace (1, 0, 0, 0) and (0, -1, 0, 1); $N(A^{T})(0, 1, 0)$. B: dim **1**, **1**, **0**, **2** Row space (1), column space (1, 4, 5), nullspace: empty basis, $N(A^{T})(-4, 1, 0)$ and (-5, 0, 1). **14:** Row space basis can be the nonzero rows of U: (1, 2, 3, 4), (0, 1, 2, 3), (0, 0, 1, 2); nullspace basis (0, 1, -2, 1) as for U; column space basis (1, 0, 0), (0, 1, 0), (0, 0, 1) (happen to have $C(A) = C(U) = \mathbb{R}^{3}$); left nullspace has empty basis.

16: If Av = 0 and v is a row of A then $v \cdot v = 0$.

32: The key is equal row spaces. First row of A = combination of the rows of B: only

possible combination (notice I) is 1 (row 1 of B). Same for each row so F = G.

8.2:

8:
$$A = \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$
 leads to $\boldsymbol{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ and $\boldsymbol{y} = \begin{bmatrix} -1 \\ 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \\ 1 \end{bmatrix}$ solving $A^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{0}$

 $A^{\perp}y = 0.$

9: Elimination on Ax = b always leads to $y^{T}b = 0$ in the zero rows of U and R: $-b_1 + b_2 - b_3 = 0$ and $b_3 - b_4 + b_5 = 0$ (those y's are from Problem 8 in the left nullspace). This is Kirchhoff's Voltage Law around the two loops. **12.a:** The nullspace and rank of $A^{T}A$ and A are always the same.

4.1:

9: Ax is always in the column space of A. If $A^{T}Ax = 0$ then Ax is also in the nullspace of A^{T} . So Ax is perpendicular to itself. Conclusion: Ax = 0 if $A^{\mathrm{T}}Ax = 0$.

11: For A: The nullspace is spanned by (-2, 1), the row space is spanned by (1, 2). The column space is the line through (1,3) and $N(A^{T})$ is the perpendicular line through (3,-1). For B: The nullspace of B is spanned by (0, 1), the row space is spanned by (1, 0). The column space and left nullspace are the same as for A.

22: (1,1,1,1) is a basis for P^{\perp} . $A = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$ has P as its nullspace and P^{\perp} as row space

33: Both r's orthogonal to both n's, both c's orthogonal to both ℓ 's, each pair independent. All A's with these subspaces have the form $[c_1 \ c_2]M[r_1 \ r_2]^T$ for a 2 by 2 invertible M.

4.2:

16: $\frac{1}{2}(1,2,-1) + \frac{3}{2}(1,0,1) = (2,1,1)$. So **b** is in the plane. Projection shows $P\mathbf{b} = \mathbf{b}$.