18.06 Solutions to PSet 4

3.5:

16: These bases are not unique! (a) $(1,1,1,1)$ for the space of all constant vectors $(c, c, c, c) \quad$ (b) $(1,-1,0,0),(1,0,-1,0),(1,0,0,-1)$ for the space of vectors with sum of components $=0 \quad$ (c) $(1,-1,-1,0),(1,-1,0,-1)$ for the space perpendicular to $(1,1,0,0)$ and $(1,0,1,1) \quad$ (d) The columns of I are a basis for its column space, the empty set is a basis (by convention) for $N(I)=\{$ zero vector $\}$.
26:
(a) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
(b) Add $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
(c) $\left[\begin{array}{rrr}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right]$.

These are simple bases (among many others) for (a) diagonal matrices (b) symmetric matrices (c) skew-symmetric matrices. The dimensions are 3, 6,3 .
30: $\left[\begin{array}{rrr}-1 & 2 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{rrr}-1 & 0 & 2 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{rrr}0 & 0 & 0 \\ -1 & 2 & 0\end{array}\right],\left[\begin{array}{rrr}0 & 0 & 0 \\ -1 & 0 & 2\end{array}\right]$.
41: $\boldsymbol{I}=\left[\begin{array}{lll}1 & \\ 1 & \\ & & 1\end{array}\right]-\left[\begin{array}{ll}1 & \\ & \\ 1 & \\ & \end{array}\right]+\left[\begin{array}{cc} & 1 \\ 1 & 1\end{array}\right]+\left[\begin{array}{lll}1 & & \\ & & 1 \\ & 1 & \end{array}\right]-\left[\begin{array}{ll} & \\ 1 & \\ & \\ & 1\end{array}\right]$.
The six P's are dependent ${ }^{\circ}$
Those five are independent: The 4th has $P_{11}=1$ and cannot be a combination of the others. Then the 2 nd cannot be (from $P_{32}=1$) and also 5th $\left(P_{32}=1\right)$. Continuing, a nonzero combination of all five could not be zero. Further challenge: How many independent 4 by 4 permutation matrices?

3.6:

6: A : $\operatorname{dim} \mathbf{2 , 2 , 2 , 1}$: Rows $(0,3,3,3)$ and $(0,1,0,1)$; columns $(3,0,1)$ and $(3,0,0)$; nullspace $(1,0,0,0)$ and $(0,-1,0,1) ; \boldsymbol{N}\left(A^{\mathrm{T}}\right)(0,1,0)$. B : $\operatorname{dim} \mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{2}$ Row space (1), column space $(1,4,5)$, nullspace: empty basis, $\boldsymbol{N}\left(A^{\mathrm{T}}\right)(-4,1,0)$ and $(-5,0,1)$.
14: Row space basis can be the nonzero rows of U : $(1,2,3,4),(0,1,2,3),(0,0,1,2)$; nullspace basis $(0,1,-2,1)$ as for U; column space basis $(1,0,0),(0,1,0),(0,0,1)$ (happen to have $\boldsymbol{C}(A)=\boldsymbol{C}(U)=\mathbf{R}^{3}$); left nullspace has empty basis.
16: If $A \boldsymbol{v}=\mathbf{0}$ and \boldsymbol{v} is a row of A then $\boldsymbol{v} \cdot \boldsymbol{v}=0$.
32: The key is equal row spaces. First row of $A=$ combination of the rows of B : only
possible combination (notice I) is 1 (row 1 of B). Same for each row so $F=G$.

8.2:

8: $A=\left[\begin{array}{rrrr}-1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1\end{array}\right]$ leads to $\boldsymbol{x}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ and $\boldsymbol{y}=\left[\begin{array}{r}-1 \\ 1 \\ -1 \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{r}0 \\ 0 \\ 1 \\ -1 \\ 1\end{array}\right]$ solving
$A^{\mathrm{T}} \boldsymbol{y}=\mathbf{0}$.
9: Elimination on $A \boldsymbol{x}=\boldsymbol{b}$ always leads to $\boldsymbol{y}^{\mathrm{T}} \boldsymbol{b}=0$ in the zero rows of U and R : $-b_{1}+b_{2}-b_{3}=0$ and $b_{3}-b_{4}+b_{5}=0$ (those \boldsymbol{y} 's are from Problem 8 in the left nullspace). This is Kirchhoff's Voltage Law around the two loops.
12.a: The nullspace and rank of $A^{\mathrm{T}} A$ and A are always the same.

4.1:

9: $A \boldsymbol{x}$ is always in the column space of A. If $A^{\mathrm{T}} A \boldsymbol{x}=\mathbf{0}$ then $A \boldsymbol{x}$ is also in the nullspace of A^{T}. So $A \boldsymbol{x}$ is perpendicular to itself. Conclusion: $A \boldsymbol{x}=\mathbf{0}$ if $A^{\mathrm{T}} A \boldsymbol{x}=\mathbf{0}$.
11: For \boldsymbol{A} : The nullspace is spanned by $(-2,1)$, the row space is spanned by $(1,2)$. The column space is the line through $(1,3)$ and $\boldsymbol{N}\left(A^{\mathrm{T}}\right)$ is the perpendicular line through $(3,-1)$. For \boldsymbol{B} : The nullspace of B is spanned by $(0,1)$, the row space is spanned by $(1,0)$. The column space and left nullspace are the same as for A.
22: $(1,1,1,1)$ is a basis for $\boldsymbol{P}^{\perp} . A=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]$ has \boldsymbol{P} as its nullspace and \boldsymbol{P}^{\perp} as row space
33: Both \boldsymbol{r} 's orthogonal to both \boldsymbol{n} 's, both \boldsymbol{c} 's orthogonal to both ℓ 's, each pair independent. All A 's with these subspaces have the form $\left[\boldsymbol{c}_{1} \boldsymbol{c}_{2}\right] M\left[\boldsymbol{r}_{1} \boldsymbol{r}_{2}\right]^{\mathrm{T}}$ for a 2 by 2 invertible M.

4.2:

16: $\frac{1}{2}(1,2,-1)+\frac{3}{2}(1,0,1)=(2,1,1)$. So \boldsymbol{b} is in the plane. Projection shows $P \boldsymbol{b}=\boldsymbol{b}$.

