### 18.06 Solutions to PSet 3

3.1.15 (a) Two planes through $(0,0,0)$ probably intersect in a line through $(0,0,0)$
(b) The plane and line probably intersect in the point $(0,0,0)$
(c) If $\boldsymbol{x}$ and $\boldsymbol{y}$ are in both $\boldsymbol{S}$ and $\boldsymbol{T}, \boldsymbol{x}+\boldsymbol{y}$ and $c \boldsymbol{x}$ are in both subspaces.
3.1.20 (a) Elimination leads to $0=b_{2}-2 b_{1}$ and $0=b_{1}+b_{3}$ in equations 2 and 3: Solution only if $b_{2}=2 b_{1}$ and $b_{3}=-b_{1} \quad$ (b) Elimination leads to $0=b_{1}+2 b_{3}$
3.1.24 The column space of $A B$ is contained in (possibly equal to) the column space of $A$. The example $B=0$ and $A \neq 0$ is a case when $A B=0$ has a smaller column space than $A$.
3.2.18 Fill in 12 then 4 then 1 to get the complete solution to $x-3 y-z=12:\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=$ $\left[\begin{array}{c}\mathbf{1 2} \\ 0 \\ 0\end{array}\right]+y\left[\begin{array}{l}\mathbf{4} \\ 1 \\ 0\end{array}\right]+z\left[\begin{array}{l}\mathbf{1} \\ 0 \\ 1\end{array}\right]=\boldsymbol{x}_{\text {particular }}+\boldsymbol{x}_{\text {nullspace }}$.
3.2.26 $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ has $\boldsymbol{N}(A)=\boldsymbol{C}(A)$ and also (a)(b)(c) are all false. Notice $\operatorname{rref}\left(A^{\mathrm{T}}\right)=$ $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
3.2.31 If $\boldsymbol{N}(A)=$ line through $\boldsymbol{x}=(2,1,0,1)$, $A$ has three pivots (4 columns and 1 special solution). Its reduced echelon form can be $R=\left[\begin{array}{lllr}1 & 0 & 0 & -2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0\end{array}\right]$ (add any zero rows).
3.3.8 The new entries keep rank $1: A=\left[\begin{array}{rrr}1 & 2 & 4 \\ 2 & \mathbf{4} & \mathbf{8} \\ 4 & \mathbf{8} & \mathbf{1 6}\end{array}\right], \quad B=\left[\begin{array}{rrr}\mathbf{2} & 6 & \mathbf{- 3} \\ \mathbf{1} & \mathbf{3} & \mathbf{- 3 / 2} \\ 2 & 6 & -3\end{array}\right]$, $M=\left[\begin{array}{cc}a & b \\ c & \boldsymbol{b} \boldsymbol{c} / \boldsymbol{a}\end{array}\right]$.
3.3.19 We are given $A B=I$ which has rank $n$. Then $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$ forces $\operatorname{rank}(A)=$ $n$. This means that $A$ is invertible. The right-inverse $B$ is also a left-inverse: $B A=I$ and $B=A^{-1}$.
3.3.22 $A=($ pivot columns $)($ nonzero rows of $R)=\left[\begin{array}{ll}1 & 0 \\ 1 & 4 \\ 1 & 8\end{array}\right]\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0\end{array}\right]+$ $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 4 \\ 0 & 0 & 8\end{array}\right] . \quad B=\left[\begin{array}{ll}2 & 2 \\ 2 & 3\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\begin{aligned} & \text { columns } \\ & \text { times rows }\end{aligned}=\left[\begin{array}{ll}2 & 0 \\ 2 & 0\end{array}\right]+\left[\begin{array}{ll}0 & 2 \\ 0 & 3\end{array}\right]$
3.4.6 (a) Solvable if $b_{2}=2 b_{1}$ and $3 b_{1}-3 b_{3}+b_{4}=0$. Then $\boldsymbol{x}=\left[\begin{array}{c}5 b_{1}-2 b_{3} \\ b_{3}-2 b_{1}\end{array}\right]=\boldsymbol{x}_{p}$
(b) Solvable if $b_{2}=2 b_{1}$ and $3 b_{1}-3 b_{3}+b_{4}=0 . \boldsymbol{x}=\left[\begin{array}{c}5 b_{1}-2 b_{3} \\ b_{3}-2 b_{1} \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]$.
3.4.24 (a) $\left[\begin{array}{l}1 \\ 1\end{array}\right][x]=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$ has 0 or 1 solutions, depending on $\boldsymbol{b}$ (b) $\quad\left[\begin{array}{ll}1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=$ [ $b$ ] has infinitely many solutions for every $b$ (c) There are 0 or $\infty$ solutions when $A$ has rank $r<m$ and $r<n$ : the simplest example is a zero matrix. (d) one solution for all $b$ when $A$ is square and invertible (like $A=I$ ).
3.4.28 $\left[\begin{array}{cccc}1 & 2 & 3 & 0 \\ 0 & 0 & 4 & 0\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right] ; \boldsymbol{x}_{n}=\left[\begin{array}{r}-2 \\ 1 \\ 0\end{array}\right] ;\left[\begin{array}{llll}1 & 2 & 3 & \mathbf{5} \\ 0 & 0 & 4 & \mathbf{8}\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 2 & 0 & -\mathbf{1} \\ 0 & 0 & 1 & \mathbf{2}\end{array}\right]$.

Free $x_{2}=0$ gives $\boldsymbol{x}_{p}=(-1,0,2)$ because the pivot columns contain $I$.
3.4.34 (a) If $\boldsymbol{s}=(2,3,1,0)$ is the only special solution to $\boldsymbol{A x}=\mathbf{0}$, the complete solution is $\boldsymbol{x}=c \boldsymbol{s}$ (line of solution!). The rank of $A$ must be $4-1=3$.
(b) The fourth variable $x_{4}$ is not free in $s$, and $R$ must be $\left[\begin{array}{rrrr}1 & 0 & -2 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$.
(c) $A \boldsymbol{x}=\boldsymbol{b}$ can be solve for all $\boldsymbol{b}$, because $A$ and $R$ have full row rank $r=3$.
3.4.36 If $A \boldsymbol{x}=\boldsymbol{b}$ and $C \boldsymbol{x}=\boldsymbol{b}$ have the same solutions, $A$ and $C$ have the same shape and the same nullspace (take $\boldsymbol{b}=\mathbf{0}$ ). If $\boldsymbol{b}=$ column 1 of $A, \boldsymbol{x}=(1,0, \ldots, 0)$ solves $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ so it solves $C \boldsymbol{x}=\boldsymbol{b}$. Then $A$ and $C$ share column 1. Other columns too: $A=C$ !

