3.

Your PRINTED name is ______ 1.

Instructors: (Hezari)(Pires)(Sheridan)(Yoo)

Please show enough work so we can see your method and give due credit.

1. (a) Find two eigenvalues and eigenvectors of

$$A = \left[\begin{array}{cc} 2 & 3 \\ 0 & 5 \end{array} \right].$$

(b) Express any vector $u_0 = \begin{bmatrix} a \\ b \end{bmatrix}$ as a combination of the eigenvectors.

(c) What is the solution u(t) to $\frac{du}{dt} = Au$ starting from $u(0) = u_0$?

(d) Find a formula $u_k = \underline{\hspace{1cm}}$ for the solution to $u_{k+1} = Au_k$ which starts from that vector u_0 . Set k = -1 to find $A^{-1}u_0$.

2. This problem is about the matrix

$$A = \left[\begin{array}{cc} \sqrt{2} & 1 \\ 0 & \sqrt{2} \end{array} \right].$$

(a) Find all eigenvectors of A. Exactly why is it impossible to diagonalize A in the form $A = S\Lambda S^{-1}$?

(b) Find the matrices U, Σ, V^T in the Singular Value Decomposition A = U Σ V^T. Tell me two orthogonal vectors v₁, v₂ in the plane so that Av₁ and Av₂ are also orthogonal.

(c) Find a matrix B that is similar to A (but different from A).
Show that A and B meet the requirement to be similar (what is it?).

- 3. Suppose A is a real m by n matrix.
 - (a) Prove that the symmetric matrix A^TA has the property $x^T(A^TA)x \geq 0$ for every vector x in \mathbb{R}^n . Explain each step in your reason.

(b) According to part (a), the matrix A^TA is positive semidefinite at least — and possibly positive definite. Under what condition on A is A^TA positive definite?

(c) If m < n prove that $A^T A$ is not positive definite.