Your PRINTED name is	1.
Your Recitation Instructor (and time) is	2.
Instructors: (Pires)(Hezari)(Sheridan)(Yoo)	3.

Please show enough work so we can see your method and give due credit.

- 1. (8 pts. each) Suppose a_1 and a_2 are orthogonal unit vectors in \mathbb{R}^5 .
 - (a) What are the requirements on a matrix P to be a projection matrix? Verify that $P = a_1 a_1^T + a_2 a_2^T$ satisfies those requirements.
 - (b) If a_3 is in \mathbb{R}^5 , what combination of a_1 and a_2 is closest to a_3 ?
 - (c) Find a combination c of a_1 , a_2 , a_3 that is perpendicular to a_1 and a_2 . If possible, choose $c \neq 0$. Describe all cases when c = 0 is the only possibility.
 - (d) Show that a_1 and a_2 and c are eigenvectors of P (if $c \neq 0$) and find their eigenvalues.

```
1:
```

a:
$$p$$
 is a projection (orthogonal projection!) if $p^2 = p$, $p^T = p$.

We know check this for
$$p = a_1 a_1^T + a_2 a_2^T$$
.

$$P^{2} = (a_{1}a_{1}^{T} + a_{2}a_{2}^{T})(a_{1}a_{1}^{T} + a_{2}a_{2}^{T}) = a_{1}a_{1}^{T}a_{1}a_{1}^{T} + a_{1}a_{1}^{T}a_{2}a_{2}^{T} + a_{2}a_{2}^{T}a_{2}^{T}a_{2}^{T}$$

$$Since \quad a_{1}^{T}a_{2} = 0 , \quad a_{2}^{T}a_{1} = 0 , \quad a_{1}d \quad a_{1}^{T}a_{1} = a_{2}^{T}a_{2} = 1 , \quad we \quad get$$

$$P^{2} = a_{1}a_{1}^{T} + a_{2}a_{2}^{T} = P .$$

$$P^{T} = (a_{1}a_{1}^{T} + a_{2}a_{2}^{T})^{T} = (a_{1}^{T})^{T}a_{1}^{T} + (a_{2}^{T})^{T}a_{2}^{T} = a_{1}a_{1}^{T} + a_{2}a_{2}^{T} = P.$$

b: The closest combination is
$$Pa_3 = (a_1^T a_3) a_1 + (a_2^T a_3) a_2$$
.

c:
$$c = error term = a_3 - pa_3 = a_3 - (a_1 a_3) a_1 - (a_2 a_3) a_2$$
.
 $c = 0$ only if c is in the plane generated by a_1 and a_2 .

d: Since
$$P$$
 is the projection on the column space of $A = [a_1 \mid a_2]$, we have:

$$\begin{cases}
p a_1 = a_1 & \Rightarrow & \lambda_1 = 1 \\
p a_2 = a_2 & \Rightarrow & \lambda_2 = 1 \\
p c = 0 & \Rightarrow & \lambda_3 = 0
\end{cases}$$

2. (7 pts. each)

$$A = \left[\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 0 & 0 & 9 & 10 \\ 0 & 0 & 11 & 12 \end{array} \right].$$

- (a) Find all nonzero terms in the big formula $\det A = \sum \pm a_{1\alpha} a_{2\beta} a_{3\gamma} a_{4\delta}$ and combine them to compute $\det A$.
- (b) Find all the pivots of A.
- (c) Find the cofactors C_{11} , C_{12} , C_{13} , C_{14} of row 1 of A.
- (d) Find column 1 of A^{-1} .

$$\frac{2:}{a: \det A = 1 \left(6 \cdot \left(9.12 - 10.11\right)\right) - 2\left(5\left(9.12 - 10.11\right)\right) = 8$$

A reduces to
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -4 & -8 & -16 \\ 0 & 0 & 9 & 10 \\ 0 & 0 & 0 & -\frac{12}{9} \end{bmatrix}$$
Hence the pivots are: 1, -4, 9, -\frac{12}{9}.

$$\frac{C:}{6_{11}} = \det \begin{bmatrix} 6 & 7 & 8 \\ 0 & 9 & 10 \\ 0 & 11 & 12 \end{bmatrix} = -12$$

$$C_{12} = - \det \begin{bmatrix} 5 & 7 & 8 \\ 0 & 9 & 10 \\ 0 & 11 & 12 \end{bmatrix} = 10$$

$$c_{13} = \det \begin{bmatrix} 5 & 6 & 8 \\ 0 & 0 & 10 \\ 0 & 0 & 12 \end{bmatrix} = 0$$

$$C_{14} = -\det \begin{bmatrix} 5 & 6 & 7 \\ 0 & 0 & 9 \\ 0 & 0 & 11 \end{bmatrix} = 0$$

$$(\vec{A}')_{11} = -\frac{12}{8}$$

$$(A^{-1})_{21} = \frac{10}{8}$$

$$(A^{-1})_{31} = 0$$

- 3. (8 pts. each) Suppose A is a 2 by 2 matrix and Ax = x and Ay = -y ($x \neq 0$ and $y \neq 0$).
 - (a) (Reverse engineering) What is the polynomial $p(\lambda) = \det(A \lambda I)$?
 - (b) If you know that the first column of A is (2,1), find the second column:

$$A = \left[\begin{array}{cc} 2 & ? \\ 1 & ? \end{array} \right].$$

- (c) For that matrix in part (b), find an invertible S and a diagonal matrix Λ so that $A=S\Lambda S^{-1}.$
- (d) Compute A^{101} . (If you don't solve parts (b) -(c), use the description of A at the start. In all questions show enough work so we can see your method and give due credit.)
- (e) If Ax = x and Ay = -y (with $x \neq 0$ and $y \neq 0$) prove that x and y are independent. Start of a proof: Suppose z = cx + dy = 0. Then Az = (follow from here.)

<u>3:</u> $P(\gamma) = (\gamma - \gamma) (-1 - \gamma) = \gamma^2 - 1$ a: We know that TrA = 1 + (-1) = 0. <u>b</u>: on the other hand if we put $A = \begin{bmatrix} 2 & a_{12} \\ 1 & a_{22} \end{bmatrix}$ then TrA = 2 + a22. Hence a22 = -2. To find a12 we note that on one hand $\det A = 1 \cdot (-1) = -1$ and on the other hand $det A = 2 a_{22} - a_{12} = -4 - a_{12}$. Therefore $a_{12} = -3$. $A = \begin{bmatrix} 1 & -3 \end{bmatrix}.$ (c): It is easy to see that x an eigenvector of 1=1 is $x = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and for y an eigenvector of $x_2 = -1$ we have $Y = \begin{bmatrix} 1 \end{bmatrix}$. So we can choose $S = \begin{bmatrix} 3 & 1 \end{bmatrix}$. d: From C we have A = SAS = SAS = A. Note that $\Lambda = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$ and therefore $\Lambda^{[0]} = \Lambda$.

e: on one hand since z=a we have Az=a.

on the other hand Az=A(cx+dy)=cAx+dAy =cx-dy.

Therefore

Since X+0

C = d = 0

X and Y

Az = cx-dy = 0

Az = cx-dy = 0

Az = cx-dy = 0