18.06 Quiz 2 Professor Strang April 6, 2011

Your PRINTED name is
Your Recitation Instructor (and time) is

Instructors: (Pires)(Hezari)(Sheridan)(Yoo)

Please show enough work so we can see your method and give due credit.

1. (8 pts. each) Suppose a; and ay are orthogonal unit vectors in RS.

(a) What are the requirements on a matrix P to be a projection matrix? Verify that

P = a,aT + asal satisfies those requirements.
1 289

(b) If a3 is in R®, what combination of a; and a, is closest to as?

(c) Find a combination ¢ of a;, as, a3 that is perpendicular to a; and ay. If possible,

choose ¢ # 0. Describe all cases when ¢ = 0 is the only possibility.

(d) Show that a; and a, and ¢ are eigenvectors of P (if ¢ # 0) and find their eigenvalues.
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. (7 pts. each)

[1 2 3 4]
56 7 8
A=

00 9 10
00 11 12 |

(a) Find all nonzero terms in the big formula det A = > Ea14 asg a3y ass and combine

them to compute det A.

(b) Find all the pivots of A.

(¢) Find the cofactors C1y, Cla, Ci3, Ciy of Tow 1 of A.

(d) Find column 1 of A~
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3. (8 pts. each) Suppose A is a 2 by 2 matrix and Az = z and Ay = —y (z+#0and
y # 0). .

(a) (Reverse engineering) What is the polynomial p(\) = det(A — AI)?

(b) If you know that the first column of A is (2,1), find the second column:
2 ¥
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(c) For that matrix in part (b), find an invertible S and a diagonal matrix A so that
A=8AS5L,

A=

(d) Compute A™. (If you don’t solve parts (b) -(c), use the description of A at the start.

In all questions show enough work so we can see your method and give due credit.)

(e) If Az = z and Ay = —y (with = # 0 and y # 0) prove that z and y are independent.

Start of a proof: Suppose z = cz + dy = 0. Then Az = (follow from here.)
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