Your PRINTED name is	1.
Your Recitation Instructor (and time) is	2.
Instructors: (Pires)(Hezari)(Sheridan)(Yoo)	3.

Please show enough work so we can see your method and give due credit.

- 1. (8 pts. each) Suppose a_1 and a_2 are orthogonal unit vectors in \mathbb{R}^5 .
 - (a) What are the requirements on a matrix P to be a projection matrix? Verify that $P = a_1 a_1^T + a_2 a_2^T$ satisfies those requirements.
 - (b) If a_3 is in \mathbb{R}^5 , what combination of a_1 and a_2 is closest to a_3 ?
 - (c) Find a combination c of a_1 , a_2 , a_3 that is perpendicular to a_1 and a_2 . If possible, choose $c \neq 0$. Describe all cases when c = 0 is the only possibility.
 - (d) Show that a_1 and a_2 and c are eigenvectors of P (if $c \neq 0$) and find their eigenvalues.

2. (7 pts. each)

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 0 & 0 & 9 & 10 \\ 0 & 0 & 11 & 12 \end{bmatrix}.$$

- (a) Find all nonzero terms in the big formula det $A = \sum \pm a_{1\alpha} a_{2\beta} a_{3\gamma} a_{4\delta}$ and combine them to compute det A.
- (b) Find all the pivots of A.
- (c) Find the cofactors C_{11} , C_{12} , C_{13} , C_{14} of row 1 of A.
- (d) Find column 1 of A^{-1} .

- 3. (8 pts. each) Suppose A is a 2 by 2 matrix and Ax = x and Ay = -y ($x \neq 0$ and $y \neq 0$).
 - (a) (Reverse engineering) What is the polynomial $p(\lambda) = \det(A \lambda I)$?
 - (b) If you know that the first column of A is (2, 1), find the second column:

$$A = \left[\begin{array}{cc} 2 & ? \\ 1 & ? \end{array} \right].$$

- (c) For that matrix in part (b), find an invertible S and a diagonal matrix Λ so that $A = S\Lambda S^{-1}$.
- (d) Compute A^{101} . (If you don't solve parts (b) -(c), use the description of A at the start. In all questions **show enough work** so we can see your method and give due credit.)
- (e) If Ax = x and Ay = -y (with $x \neq 0$ and $y \neq 0$) prove that x and y are *independent*. Start of a proof: Suppose z = cx + dy = 0. Then Az = (follow from here.)