Your PRINTED name is
1.

Your Recitation Instructor (and time) is \qquad
Instructors: (Pires)(Hezari)(Sheridan)(Yoo)
2.
3.

Please show enough work so we can see your method and give due credit.

1. (8 pts. each) Suppose a_{1} and a_{2} are orthogonal unit vectors in R^{5}.
(a) What are the requirements on a matrix P to be a projection matrix? Verify that $P=a_{1} a_{1}^{T}+a_{2} a_{2}^{T}$ satisfies those requirements.
(b) If a_{3} is in R^{5}, what combination of a_{1} and a_{2} is closest to a_{3} ?
(c) Find a combination c of a_{1}, a_{2}, a_{3} that is perpendicular to a_{1} and a_{2}. If possible, choose $c \neq 0$. Describe all cases when $c=0$ is the only possibility.
(d) Show that a_{1} and a_{2} and c are eigenvectors of $P($ if $c \neq 0)$ and find their eigenvalues.
2. (7 pts. each)

$$
A=\left[\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
0 & 0 & 9 & 10 \\
0 & 0 & 11 & 12
\end{array}\right]
$$

(a) Find all nonzero terms in the big formula $\operatorname{det} A=\sum \pm a_{1 \alpha} a_{2 \beta} a_{3 \gamma} a_{4 \delta}$ and combine them to compute $\operatorname{det} A$.
(b) Find all the pivots of A.
(c) Find the cofactors $C_{11}, C_{12}, C_{13}, C_{14}$ of row 1 of A.
(d) Find column 1 of A^{-1}.
3. (8 pts. each) Suppose A is a 2 by 2 matrix and $A x=x$ and $A y=-y(x \neq 0$ and $y \neq 0)$.
(a) (Reverse engineering) What is the polynomial $p(\lambda)=\operatorname{det}(A-\lambda I)$?
(b) If you know that the first column of A is $(2,1)$, find the second column:

$$
A=\left[\begin{array}{ll}
2 & ? \\
1 & ?
\end{array}\right]
$$

(c) For that matrix in part (b), find an invertible S and a diagonal matrix Λ so that $A=S \Lambda S^{-1}$.
(d) Compute A^{101}. (If you don't solve parts (b) -(c), use the description of A at the start. In all questions show enough work so we can see your method and give due credit.)
(e) If $A x=x$ and $A y=-y$ (with $x \neq 0$ and $y \neq 0$) prove that x and y are independent. Start of a proof: Suppose $z=c x+d y=0$. Then $A z=$ (follow from here.)

