Your PRINTED name is
1.

Your Recitation Instructor (and time) is \qquad Instructors: (Pires)(Hezari)(Sheridan)(Yoo)
3.

1. (a) By elimination find the rank of A and the pivot columns of A (in its column space):

$$
A=\left[\begin{array}{llll}
1 & 2 & 1 & 4 \\
3 & 6 & 3 & 9 \\
2 & 4 & 2 & 9
\end{array}\right]
$$

(b) Find the special solutions to $A x=0$ and then find all solutions to $A x=0$.
(c) For which number b_{3} does $A x=\left[\begin{array}{c}3 \\ 9 \\ b_{3}\end{array}\right]$ have a solution?

Write the complete solution x (the general solution) with that value of b_{3}.
2. Suppose A is a 3 by 5 matrix and the equation $A x=b$ has a solution for every b. What are $(a)(b)(c)(d)$? (If you don't have enough information to answer, tell as much about the answer as you can.)
(a) Column space of A
(b) Nullspace of A
(c) Rank of A
(d) Rank of the 6 by 5 matrix $B=\left[\begin{array}{l}A \\ A\end{array}\right]$.
3. (a) When an odd permutation matrix P_{1} multiplies an even permutation matrix P_{2}, the product $P_{1} P_{2}$ is \qquad (EXPLAIN WHY).
(b) If the columns of B are vectors in the nullspace of A, then $A B$ is \qquad (EXPLAIN WHY).
(c) If $c=0$, factor this matrix into $A=L U$ (lower triangular times upper triangular):

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 4 & 9 \\
1 & 8 & c
\end{array}\right]
$$

(d) That matrix A is invertible unless $c=$ \qquad

