
18.06 PSET 8 SOLUTIONS

APRIL 15, 2010

Problem 1. (§6.3, #14) The matrix in this question is skew-symmetric (AT = −A):

du

dt
=





0 c −b
−c 0 a
b −a 0



u or

u′

1 = cu2 − bu3

u′

2 = au3 − cu1

u′

3 = bu1 − au2

(a) The derivative of ‖u(t)‖2 = u2
1 + u2

2 + u3
3 is 2u1u

′

1 + 2u2u
′

2 + 2u3u
′

3. Substitute u′

1, u
′

2, u
′

3 to get zero.
Then ‖u(t)‖2 stays equal to ‖u(0)‖2.

(b) When A is skew-symmetric, Q = eAt is orthogonal. Prove QT = e−At from the series for Q = eAt.
Then QTQ = I.

Solution. (4 points)

(a)

2u1u
′

1 + 2u2u
′

2 + 2u3u
′

3 = 2u1(cu2 − bu3) + 2u2(au3 − cu1) + 2u3(bu1 − au2) = 0.

(b) The important points are that (An)T = (AT)n = (−A)n, and that we can take transpose termwise
in a sum:

QT =

(

∞
∑

n=0

An tn

n!

)T

=

∞
∑

n=0

(An)T
tn

n!
=

∞
∑

n=0

(−A)n tn

n!
= e−At.

Then,

QTQ = e−AteAt = e0 = I

because A and −A commute (but I don’t think the problem intended for you to have to actually
check this!). �

Problem 2. (§6.3, #24) Write A =

[

1 3
0 0

]

as SΛS−1. Multiply SeΛtS−1 to find the matrix exponential

eAt. Check eAt and the derivative of eAt when t = 0.

Solution. (4 points)

Λ =

[

1 0
0 3

]

and S =

[

− 1
2

1
2

0 1

]

.

Then,

SeΛtS−1 =

[

et e3 t

2 − et

2
0 e3 t

]

This is the identity matrix when t = 0, as it should be.
The derivative matrix is

[

et 3/2e3t − 1/2et

0 3e3t

]

which is equal to A when t = 0, as it should be. �
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Problem 3. (§6.3, #28) Centering y′′ = −y in Example 3 will produce Yn+1 − 2Yn + Yn−1 = −(∆t)2Yn.
This can be written as a one-step difference equation for U = (Y, Z):

Yn+1 = Yn + ∆tZn

Zn+1 = Zn − ∆tYn+1

[

1 0
∆t 1

] [

Yn+1

Zn+1

]

=

[

1 ∆t
0 1

] [

Yn

Zn

]

.

Invert the matrix on the left side to write this as Un+1 = AUn. Show that detA = 1. Choose the large
time step ∆t = 1 and find the eigenvalues λ1 and λ2 = λ1 of A:

A =

[

1 1
−1 0

]

has |λ1| = |λ2| = 1. Show that A6 is exactly I.

After 6 steps to t = 6, U6 equals U0. The exact y = cos t returns to 1 at t = 2π.

Solution. (12 points) We have
[

1 0
∆t 1

]

−1

=

[

1 0
−∆t 1

]

and so A =

[

1 0
−∆t 1

] [

1 ∆t
0 1

]

=

[

1 ∆t
−∆t 1 − (∆t)2

]

Clearly detA = 1: it is the product of two matrices that are triangular with ones on the diagonal, and so
each have determinant 1.

For ∆t = 1, the matrix becomes

[

1 1
−1 0

]

. The eigenvalues are the roots of the polynomial λ2−λ+1 = 0:

λ1 =
1 + i

√
3

2
and λ2 =

1 − i
√

3

2
= λ1.

These numbers are actually pretty special: Since λ2 = λ−1, they satisfy λ3 = λ2−λ = −1 and so λ6 = 1.
Since λ1 6= λ2, there is a basis v1, v2 consisting of eigenvectors for A. So to check that A6 = I, it is enough

to check this on the basis v1 and v2. But, A6v1 = λ6
1v1 = v1 and A6v2 = λ6

2v2 = v2!
(I don’t think there was a question in the last sentence. . . ) �

Problem 4. (§6.3, #29) The centered choice (leapfrog method) in Problem 28 is very successful for small

time steps ∆t. But find the eigenvalues of A for ∆t =
√

2 and 2:

A =

[

1
√

2

−
√

2 −1

]

and A =

[

1 2
−2 −3

]

Both matrices have |λ| = 1. Compute A4 in both cases and find the eigenvectors of A. That value ∆t = 2
is at the border of instability. Time steps ∆t > 2 will lead to |λ| > 1, and the powers in Un = AnU0 will
explode.
Note You might say that nobody would compute with ∆t > 2. But if an atom vibrates with y′′ = −1000000y,
then ∆t > .0002 will give instability. Leapfrog has a very strict stability limit. Yn+1 = Yn + 3Zn and
Zn+1 = Zn − 3Yn+1 will explode because ∆t = 3 is too large.

Solution. (12 points) For ∆t =
√

2, the eigenvalues are the roots of λ2 + 1 = 0, that is ±i . For ∆t = 2,

the eigenvalues are the roots of λ2 + 2λ + 1 = 0, that is −1 (with algebraic multiplicity two).

In the first case, A4 = I (for the same reason as in the previous problem, or just multiply it out). The
eigenvectors of A (for i,−i respectively) are (multiples of)

v1 =

[

1 + i

−
√

2i

]

and v2 =

[

1 − i√
2i

]

.

In the second case, we don’t get distinct eigenvectors and have to multiply it out:

A4 =

[

−7 −8
8 9

]

.

The eigenvectors of A for λ = −1 are (multiples of)
[

1
−1

]
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(Note that the algebraic multiplicity of λ = 0 is two, while the geometric multiplicity is one: That is, there
is a one-dimensional space of eigenvectors.) �

Problem 5. (§6.3, #30) Another good idea for y′′ = −y is the trapezoidal method (half forward/half back):
This may be the best way to keep (Yn, Zn) exactly on a circle.

Trapezoidal

[

1 −∆t/2
∆t/2 1

] [

Yn+1

Zn+1

]

=

[

1 ∆t/2
−∆t/2 1

] [

Yn

Zn

]

(a) Invert the left matrix to write this equation as Un+1 = AUn. Show that A is an orthogonal matrix:

ATA = I. These points Un never leave the circle. A = (I−B)−1(I+B) is always an orthogonal
matrix if BT = −B.

(b) (Optional MATHLAB) Take 32 steps from U0 = (1, 0) to U32 with ∆t = 2π/32. Is U32 = U0? I
think there is a small error.

Solution. (12 points)

(a) I get

[

1 −∆t/2
∆t/2 1

]

−1

=

[

4
(∆t)2+4

2∆t
(∆t)2+4

− 2∆t
(∆t)2+4

4
(∆t)2+4

]

and A =

[

4−(∆t)2

(∆t)2+4
4∆t

(∆t)2+4

− 4∆t
(∆t)2+4

4−(∆t)2

(∆t)2+4

]

It’s an annoying computation to check directly that ATA = I, but it works.
(b) It’s pretty close (approx. (0.9992, 0.0401)).. . . �

Problem 6. (§6.4, #7)

(a) Find a symmetric matrix

[

1 b
b 1

]

that has a negative eigenvalue.

(b) How do you know it must have a negative pivot?
(c) How do you know it can’t have two negative eigenvalues?

Solution. (4 points)

(a) The eigenvalues of that matrix are 1±b. So take any b > 1 (or b < −1). In this case, the determinant
is 1 − b2 < 0.

(b) We saw in the book that the signs of the pivots coincide with the signs of the eigenvalues. (Alterna-
tively, the product of the pivots is the determinant, which is negative in this case. So, precisely one
of the two pivots must be negative.)

(c) The product of the eigenvalues equals the determinant, which is negative in this case. Two negative
numbers cannot have a negative product! �

Problem 7. (§6.4, #10) Here is a quick “proof” that the eigenvalues of all real matrices are real:

False proof Ax = λx gives xTAx = λxTx so λ =
xTAx

xTx
is real.

Find the flaw in this reasoning—a hidden assumption that is not justified. You could test those steps on the
90-degree rotation matrix [0,−1; 1, 0] with λ = i and x = (i, 1).

Solution. (4 points) The vector x doesn’t have real components. So, xTx can be zero and neither numerator
nor denominator is obviously real. . . �

Problem 8. (§6.4, #23) Which of these classes of matrices do A and B belong to: Invertible, orthogonal,
projection, permutation, diagonalizable, Markov?

A =





0 0 1
0 1 0
1 0 0



 B =
1

3





1 1 1
1 1 1
1 1 1



 .

Which of these factorizations are possible for A and B: LU , QR, SΛS−1, QΛQT?
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Solution. (4 points) One at a time:

(a) Matrix A is invertible, orthogonal, a permutation matrix, diagonalizable, and Markov! (So everything
but a projection. . . )

Let’s see why: A satisfies A2 = I and A = AT, and so also AAT = I. This means it is invertible,
symmetric, and orthogonal. Since it is symmetric, it is diagonalizable (with real eigenvalues!). It is
a permutation matrix by just looking at it. It is Markov since the columns add to 1 (just by looking
at it), or alternatively because every permutation matrix is. It is not a projection since A2 = I 6= A.

All of the factorizations are possible for it: LU and QR are always possible, SΛS−1 is possible
since it is diagonalizable, and QΛQT is possible since it is symmetric.

(b) Matrix B is a projection, diagonalizable, and Markov. It is not invertible, not orthogonal, and not a
permutation.

Let’s see why: B is a projection since B2 = B, it is symmetric and thus diagonalizable, and
it’s Markov since the columns add to 1. It is not invertible since the columns are visibly linearly
dependent, it is not orthogonal since the columns are far from orthonormal, and it’s clearly not a
permutation.

All the factorizations are possible for it: LU and QR are always possible, SΛS−1 is possible since
it is diagonalizable, and QΛQT is possible since it is symmetric.

�

Problem 9. (§6.4, #28) For complex matrices, the symmetry AT = A that produces real eigenvalues

changes to A
T

= A. From det(A − λI) = 0, find the eigenvalues of the 2 by 2 “Hermitian” matrix

A =

[

4 2 + i
2 − i 0

]

= A
T

To see why eigenvalues are real when A
T

= A, adjust equation (1) of the text to Ax = λx.

Transpose to xTA
T

= xTλ. With A
T

= A, reach equation (2): λ = λ.

Solution. (12 points) We solve λ2 − 4λ − 5 = 0 to find λ = −1 or λ = 5.
Now let’s do the proof:

λxTx =
(

xTAx
)T

= xTATx = xTAx = λxTx.

But now, xTx is the complex conjugate of xTx. Since xTx =
∑

i |xi|2 is a non-negative real number, it is its
own complex conjugate (and non-zero). Dividing the previous displayed equation by this non-zero number,

we get λ = λ. �

Problem 10. (§6.4, #30) If λmax is the largest eigenvalue of a symmetric matrix A, no diagonal entry can
be larger tha λmax. What is the first entry a11 of A = QΛQT ? Show why a11 ≤ λmax.

Solution. (12 points) Set e1 = (1, 0, 0, . . .)T and v = QTe1 = (v1, . . . , vn). Then,

a11 = eT
1 Ae1 = eT

1 QΛQTe1 = (QTe1)
TΛ(QTe1) = vTΛv =

n
∑

i=1

λiv
2
i .

Since QT is orthogonal,

‖v‖ = ‖QTe1‖ = ‖e1‖ = 1

and so

a11 ≤ λmax

n
∑

i=1

v2
i = λmax‖v‖2 = λmax.

�

Problem 11. (§8.3, #9) Prove that the square of a Markov matrix is also a Markov matrix.
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Solution. (4 points) A matrix A is matrix precisely if the sum of the components of Ax is equal to the sum
of the components of x, i.e.

∑

xi =
∑

(Ax)i. (In other words, if the “transition probabilities” given by A
keep the total probability the same.) But if A doesn’t change the sum of the components, then certainly A2

doesn’t either. �

Problem 12. (§8.3, #12) A Markov differential equation is not du/dt = Au but du/dt = (A − I)u. The
diagonal is negative, the rest of A − I is positive. The coulmns add to zero.

Find the eigenvalues of B = A − I =

[

−.2 .3
.2 −.3

]

. Why does A − I have λ = 0?

When eλ1t and eλ2t multiply x1 and x2, what is the steady state as t → ∞?

Solution. (4 points) The eigenvalues are the roots of λ2 + 1/2λ, that is 0,−1/2 . This has λ = 0 as an

eigenvalue since A has λ = 1 as an eigenvalue (since it is Markov).
For λ1 = 0, eλ1tx1 = x1 is already the steady state.
For λ2 = −1/2, eλ2tx2 = e−1/2tx2 goes to the steady state (0, 0) as t → ∞.

�

Problem 13. (§8.3, #16) (Markov again) This matrix has zero determinant. What are its eigenvalues?

A =





.4 .2 .3

.2 .4 .3

.4 .4 .4



 .

Find the limits of Aku0 starting from u0 = (1, 0, 0) and then u0 = (100, 0, 0).

Solution. (12 points) The eigenvalues are the roots of λ3 − 6/5λ2 + 1/5λ = 0, which are 0, 1/5, 1

We can find corresponding eigenvectors:

• For λ = 0: (1, 1,−2).
• For λ = 1/5: (1,−1, 0).
• For λ = 1: (3, 3, 4) (for λ = 1).

(And in fact, we only care about the last one since the others have |λ| < 1)
So, limk→∞ Ak is a (non-orthogonal) projection onto the line spanned by (3, 3, 4). Since A is Markov,

limk→∞ Ak is as well and its columns are vectors parallel to (3, 3, 4) whose components sum to 1. This tells
us right away what this limit must be:

lim
k→∞

Ak =





.3 .3 .3

.4 .4 .4

.4 .4 .4





The limits we wanted are

limAk





1
0
0



 =





.3

.3

.4



 and lim AK





100
0
0



 =





30
30
40





Note that we knew ahead of time that the second answer would just be 100 times the first by linearity. I
have no idea why the book would ask such a silly thing. �
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