18.06 Problem Set 7

Due Thursday, 1 April 2010 at 4 pm in the undergrad math office. Please note that the problems from the textbook are out of the 4th edition: make sure to check that you are doing the correct problems. For MATLAB problems, please include a printout of your code with your problem set. You can type diary ("filename") at the beginning of your session to save a transcript, and diary off when you are done.

Non-challenge problems are worth 4 points, while challenge problems are worth 12.

1. Do problems 16,32 , and 33 from section 5.2.
2. Do problems $8,28,40$, and 41 from section 5.3.
3. Do problems 19 and 29 from section 6.1.
4. Do problems 6, 16, and 37 from section 6.2.
5. Challenge problem: in MATLAB, the command $A=$ toeplitz (v) produces a symmetric matrix in which each descending diagonal (from left to right) is constant and the first row is v. For instance, if $v=\left[\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 1\end{array}\right], A=\operatorname{toeplitz}(v)$ is the matrix with 1 s on both sides of the main diagonal and on the far corners, and 0s elsewhere. More generally, let $v(n)$ be the vector in \mathbf{R}^{n} with a 1 in the second and last places and 0 s elsewhere, and let $A(n)=\operatorname{toeplitz}(v(n))$.
a Experiment with $n=5, \cdots, 12$ in MATLAB to see the repeating pattern of $\operatorname{det} A(n)$.
b Expand det $A(n)$ in terms of cofactors of the first row and in terms of cofactors of the first column. Use the known determinants from problems 5.2.13-14 to obtain the same pattern found in part (a).
