
18.06 Problem Set 7 Solutions
Due Thursday, 1 April 2010 at 4 pm in 2-106

Total: 100 points

Prob. 16, Sec. 5.2, Pg. 265: Fn is the determinant of the 1, 1, −1 tridiagonal matrix of order n:

F2 =
∣∣∣∣1 −1
1 1

∣∣∣∣ = 2 F3 =

∣∣∣∣∣∣
1 −1 0
1 1 −1
0 1 1

∣∣∣∣∣∣ = 3 F4 =

∣∣∣∣∣∣∣∣
1 −1
1 1 −1

1 1 −1
1 1

∣∣∣∣∣∣∣∣ 6= 4.

Expand in cofactors to show that Fn = Fn−1 + Fn−2. These determinants are Fibonacci numbers
1, 2, 3, 5, 8, 13, . . . . The sequence usually starts 1, 1, 2, 3 (with two 1’s) so our Fn is the usual
Fn+1.

Solution (see pg. 535, 4 pts.): The 1, 1 cofactor of the n by n matrix is Fn−1. The 1, 2 cofactor
has a 1 in column 1, with cofactorFn−2. Multiply by (−1)1+2 and also (−1) from the 1, 2 entry to
find Fn = Fn−1 + Fn−2 (so these determinants are Fibonacci numbers).

Prob. 32, Sec. 5.2, Pg. 268: Cofactors of the 1, 3, 1 matrices in Problem 21 give a recursion
Sn = 3Sn−1 − Sn−2. Amazingly that recursion produces every second Fibonacci number. Here is
the challenge.
Show that Sn is the Fibonacci number F2n+2 by proving F2n+2 = 3F2n − F2n−2. Keep using Fibo-
nacci’s rule Fk = Fk−1 + Fk−2 starting with k = 2n + 2.

Solution (see pg. 535, 12 pts.): To show that F2n+2 = 3F2n − F2n−2, keep using Fibonacci’s rule:

F2n+2 = F2n+1 + F2n = F2n + Fn−1 + F2n = 2F2n + (F2n − F2n−2) = 3F2n − F2n−2.

Prob. 33, Sec. 5.2, Pg. 268: The symmetric Pascal matrices have determinant 1. If I subtract 1
from the n, n entry, why does the determinant become zero? (Use rule 3 or cofactors.)

det


1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

 = 1 (known) det


1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 19

 = 0 (to explain).

Solution (see pg. 535, 12 pts.): The difference from 20 to 19 multiplies its cofactor, which is the
determinant of the 3 by 3 Pascal matrix, so equal to 1. Thus the det drops by 1.

Prob. 8, Sec. 5.3, Pg. 279: Find the cofactors of A and multiply ACT to find detA:

A =

1 1 4
1 2 2
1 2 5

 and C =

6 −3 0
· · ·
· · ·

 and ACT = .

If you change that 4 to 100, why is detA unchanged?
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Solution (see pg. 536, 4 pts.): Straightforward computation yields C and detA = 3:

C =

 6 −3 0
3 1 −1

−6 2 1

 and ACT =

3 0 0
0 3 0
0 0 3

 .
This is (det A)I and detA = 3.
The 1, 3 cofactor of A is 0.
Multiplying by 4 or by 100: no change.

Prob. 28, Sec. 5.3, Pg. 281: Spherical coordinates ρ, φ, θ satisfy x = ρ sin φ cos θ and y =
ρ sinφ sin θ and z = ρ cos φ. Find the 3 by 3 matrix of partial derivatives: ∂x/∂ρ, ∂x/∂φ, ∂x/∂θ in
row 1. Simplify its determinant to J = ρ2 sin φ. Then d V in spherical coordinates is ρ2 sinφdρ dφ dθ
the volume of an infinitesimal “coordinate box”.

Solution (4 pts.): The rows are formed by the partials of x, y, z with respect to ρ, φ, θ:sin φ cos θ ρ cos φ cos θ −ρ sinφ sin θ
sinφ sin θ ρ cos φ sin θ ρ sinφ cos θ

cos φ −ρ sinφ 0

 .

Expanding its determinant J along the bottom row, we get

J = cos φ(ρ2 cos φ sinφ)(cos2 θ + sin2 θ) + ρ2 sin3 φ(cos2 θ + sin2 θ)

= ρ2 sin φ(cos2 φ + sin2 φ) = ρ2 sinφ.

Prob. 40, Sec. 5.3, Pg. 282: Suppose A is a 5 by 5 matrix. Its entries in row 1 multiply determi-
nants (cofactors) in rows 2–5 to give the determinant. Can you guess a “Jacobi formula” for detA
using 2 by 2 determinants from rows 1–2 times 3 by 3 determinants from rows 3–5? Test your
formula on the −1, 2, −1 tridiagonal matrix that has determinant 6.

Solution (12 pts.): A good guess for detA is the sum, over all pairs i, j with i < j, of (−1)i+j+1

times the 2 by 2 determinant formed from rows 1–2 and columns i, j times the 3 by 3 determinant
formed from rows 3–5 and the complementary columns (this formula is more commonly named
after Laplace than Jacobi). There are

(
5
2

)
terms. In the given case, only the first two are nonzero:

det A =
∣∣∣∣ 2 −1
−1 2

∣∣∣∣
∣∣∣∣∣∣

2 −1
−1 2 −1

−1 2

∣∣∣∣∣∣ −
∣∣∣∣ 2
−1 −1

∣∣∣∣
∣∣∣∣∣∣
−1 −1

2 −1
−1 2

∣∣∣∣∣∣ = (3)(4) − (−2)(−3) = 6.

Prob. 41, Sec. 5.3, Pg. 282: The 2 by 2 matrix AB = (2 by 3)(3 by 2) has a “Cauchy–Binet
formula” for detAB:

det AB = sum of (2 by 2 determinants in A) (2 by 2 determinants in B).

(a) Guess which 2 by 2 determinants to use from A and B.
(b) Test your formula when the rows of A are 1, 2, 3 and 1, 4, 7 with B = AT.

Solution (12 pts.): (a) A good guess is the sum, over all pairs i, j with i < j, of the product of
the 2 by 2 determinants formed from columns i, j of A and rows i, j of B.

(b) First, AAT =
[
1 2 3
1 4 7

] 1 1
2 4
3 7

 =
[
14 30
30 66

]
. So det AAT = 924 − 900 = 24.

On the other hand,
∣∣∣∣1 2
1 4

∣∣∣∣ ∣∣∣∣1 1
2 4

∣∣∣∣ +
∣∣∣∣1 3
1 7

∣∣∣∣ ∣∣∣∣1 1
3 7

∣∣∣∣ +
∣∣∣∣2 3
4 7

∣∣∣∣ ∣∣∣∣2 4
3 7

∣∣∣∣ = 4 + 16 + 4 = 24.
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Prob. 19, Sec. 6.1, Pg. 295: A 3 by 3 matrix B is known to have eigenvalues 0, 1, 2. This is
information is enough to find three of these (give the answers where possible):

(a) the rank of B,
(b) the determinant of BTB,
(c) the eigenvalues of BTB,
(d) the eigenvalues of (B2 + I)−1.

Solution (4 pts.): (a) The rank is at most 2 since B is singular as 0 is an eigenvalue. The rank is
not 0 since B is not 0 as B has a nonzero eigenvalue. The rank is not 1 since a rank-1 matrix has
only one nonzero eigenvalue as every eigenvector lies in the column space. Thus the rank is 2.

(b) We have det BTB = det BT det B = (detB)2 = 0 · 1 · 2 = 0.
(c) There is not enough information to find the eigenvalues of BTB. For example,

if B =

0
1

2

 , then BTB =

0
1

4

 ; if B =

0 1
1

2

 , then BTB =

0
2

4

 .

However, the eigenvalues of a triangular matrix are its diagonal entries.
(d) If Ax = λx, then x = λA−1x; also, any polynomial p(t) yields p(A)x = p(λ)x. Hence the

eigenvalues of (B2 + I)−1 are 1/(02 + 1) and 1/(12 + 1) and 1/(22 + 1), or 1 and 1/2 and 1/5.

Prob. 29, Sec. 6.1, Pg. 296: (Review) Find the eigenvalues of A, B, and C:

A =

1 2 3
0 4 5
0 0 6

 and B =

0 0 1
0 2 0
3 0 0

 and C =

2 2 2
2 2 2
2 2 2

 .

Solution (4 pts.): Since the eigenvalues of a triangular matrix are its diagonal entries, the eigen-
values of A are 1, 4, 6. Since the characteristic polynomial of B is

det(B − λI) = (−λ)(2 − λ)(−λ) − 1(2 − λ)3 = (2 − λ)(λ2 − 3),

the eigenvalues of B are 2, ±
√

3. Since C is 6 times the projection onto (1, 1, 1), the eigenvalues of
C are 6, 0, 0.

Prob. 6, Sec. 6.2, Pg. 308: Describe all matrices S that diagonalize this matrix A (find all
eigenvectors):

A =
[
4 0
1 2

]
,

Then describe all matrices that diagonalize A−1.

Solution (see pg. 537, 4 pts.): The columns of S are nonzero multiples of (2, 1) and (0, 1): either
order. Same for A−1. Indeed, since the eigenvalues of a triangular matrix are its diagonal entries,
the eigenvalues of A are 4, 2. Further, (2, 1) and (0, 1) obviously span the nullspaces of[

0 0
1 −2

]
and

[
2 0

−1 0

]
.

Prob. 16, Sec. 6.2, Pg. 309: (Recommended) Find Λ and S to diagonalize A1 in Problem 15:

A1 =
[
.6 .9
.4 .1

]
.
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What is the limit of Λk as k → ∞? What is the limit of SΛkS−1? In the columns of the matrix
you see the .

Solution (4 pts.): The columns sum to 1; hence, A1 − I is singular, and so 1 is an eigenvalue. The
two eigenvalues sum to 0.6+0.1; so the other one is −0.3. Further, the nullspaces of[

−0.4 0.9
0.4 −0.9

]
and

[
0.9 0.9
0.4 0.4

]
are obviously spanned by (9, 4) and (−1, 1). Therefore,

Λ =
[
1

−0.3

]
and S =

[
9 −1
4 1

]
and Λk →

[
1

0

]
and

SΛkS−1 →
[
9 −1
4 1

] [
1

0

]
1

9 + 4

[
1 1

−4 9

]
=

1
13

[
9 9
4 4

]
.

In the columns of the last matrix you see the steady state vector.

Prob. 37, Sec. 6.2, Pg. 311: The transpose of A = SΛS−1 is AT = (S−1)TΛST. The eigenvectors
in ATy = λy are the columns of that matrix (S−1)T. They are often called left eigenvectors.
How do you multiply matrices to find this formula for A?

Sum of rank-1 matrices A = SΛS−1 = λ1x1y
T
1 + · · · + λnxnyT

n .

Solution (see pg. 539, 12 pts.): Columns of S times rows of ΛS−1 will give r rank-1 matrices (r =
rank of A).

Challenge problem: in MATLAB (and in GNU Octave), the command A=toepliz(v) produces
a symmetric matrix in which each descending diagonal (from left to right) is constant and the first
row is v. For instance, if v = [0 1 0 0 0 1], then toepliz(v) is the matrix with 1s on both sides of
the main diagonal and on the far corners, and 0s elsewhere. More generally, let v(n) be the vector
in Rn with a 1 in the second and last places and 0s elsewhere, and let A(n)=toepliz(v(n)).

(a) Experiment with n = 5, . . . , 12 in MATLAB to see the repeating pattern of detA(n).
(b) Expand detA(n) in terms of cofactors of the first row and in terms of cofactors of the first

column. Use the known determinant Cn of problem 5.2.13 to recover the pattern found in part (a).

Solution (12 pts.): (a) The output 2, −4, 2, 0, 2, −4, 2, 0 is returned by this line of code:

for n = 5:12; v=zeros(1,n); v(2)=1; v(n)=1; det(toeplitz(v)), endfor.

(b) Expand detA(n) along the first row and then down both first columns to get

det A(n) = −Cn−2 − (−1)n + (−1)n+1 + (−1)n+1(−1)nCn−2 where Cn =

{
0, n odd;
(−1)n/2, n even.

Thus det A(n) = 2(Cn − (−1)n), which recovers the pattern found in part (a).


