18.06 Problem Set 6 Solutions

Due Thursday, 18 March 2010 at 4 pm in 2-108.
Total: 100 points

Section 4.3. Problem 4: Write down $E=\|A x-b\|^{2}$ as a sum of four squaresthe last one is $(C+4 D-20)^{2}$. Find the derivative equations $\partial E / \partial C=0$ and $\partial E / \partial D=0$. Divide by 2 to obtain the normal equations $A^{T} A \widehat{x}=A^{T} b$.

Solution (4 points)
Observe

$$
A=\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 3 \\
1 & 4
\end{array}\right), \quad b=\left(\begin{array}{c}
0 \\
8 \\
8 \\
20
\end{array}\right), \text { and define } x=\binom{C}{D}
$$

Then

$$
A x-b=\left(\begin{array}{c}
C \\
C+D-8 \\
C+3 D-8 \\
C+4 D-20
\end{array}\right)
$$

and

$$
\|A x-b\|^{2}=C^{2}+(C+D-8)^{2}+(C+3 D-8)^{2}+(C+4 D-20)^{2}
$$

The partial derivatives are

$$
\begin{gathered}
\partial E / \partial C=2 C+2(C+D-8)+2(C+3 D-8)+2(C+4 D-20)=8 C+16 D-72 \\
\partial E / \partial D=2(C+D-8)+6(C+3 D-8)+8(C+4 D-20)=16 C+52 D-224
\end{gathered}
$$

On the other hand,

$$
A^{T} A=\left(\begin{array}{cc}
4 & 8 \\
8 & 26
\end{array}\right), A^{T} b=\binom{36}{112}
$$

Thus, $A^{T} A x=A^{T} b$ yields the equations $4 C+8 D=36,8 C+26 D=112$. Multiplying by 2 and looking back, we see that these are precisely the equations $\partial E / \partial C=0$ and $\partial E / \partial D=0$.

Section 4.3. Problem 7: Find the closest line $b=D t$, through the origin, to the same four points. An exact fit would solve $D \cdot 0=0, D \cdot 1=8, D \cdot 3=8, D \cdot 4=20$.

Find the 4 by 1 matrix A and solve $A^{T} A \widehat{x}=A^{T} b$. Redraw figure 4.9 a showing the best line $b=D t$ and the e 's.

Solution (4 points) Observe

$$
A=\left(\begin{array}{l}
0 \\
1 \\
3 \\
4
\end{array}\right), b=\left(\begin{array}{c}
0 \\
8 \\
8 \\
20
\end{array}\right), A^{T} A=(26), A^{T} b=(112)
$$

Thus, solving $A^{T} A x=A^{T} b$, we arrive at

$$
D=56 / 13
$$

Here is the diagram analogous to figure 4.9a.

Section 4.3. Problem 9: Form the closest parabola $b=C+D t+E t^{2}$ to the same four points, and write down the unsolvable equations $A x=b$ in three unknowns
$x=(C, D, E)$. Set up the three normal equations $A^{T} A \widehat{x}=A^{T} b$ (solution not required). In figure 4.9 a you are now fitting a parabola to 4 points-what is happening in Figure 4.9b?

Solution (4 points)
Note

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 3 & 9 \\
1 & 4 & 16
\end{array}\right), b=\left(\begin{array}{c}
0 \\
8 \\
8 \\
20
\end{array}\right), x=\left(\begin{array}{l}
C \\
D \\
E
\end{array}\right) .
$$

Then multiplying out $A x=b$ yields the equations

$$
C=0, C+D+E=8, C+3 D+9 E=8, C+4 D+16 E=20
$$

Take the sum of the fourth equation and twice the second equation and subtract the sum of the first equation and two times the third equation. One gets $0=20$. Hence, these equations are not simultaneously solvable.
Computing, we get

$$
A^{T} A=\left(\begin{array}{ccc}
4 & 8 & 26 \\
8 & 26 & 92 \\
26 & 92 & 338
\end{array}\right), A^{T} b=\left(\begin{array}{c}
36 \\
112 \\
400
\end{array}\right) .
$$

Thus, solving this problem is the same as solving the system

$$
\left(\begin{array}{ccc}
4 & 8 & 26 \\
8 & 26 & 92 \\
26 & 92 & 338
\end{array}\right)\left(\begin{array}{l}
C \\
D \\
E
\end{array}\right)=\left(\begin{array}{c}
36 \\
112 \\
400
\end{array}\right) .
$$

The analogue of diagram 4.9(b) in this case would show three vectors $a_{1}=(1,1,1,1)$, $a_{2}=(0,1,3,4), a_{3}=(0,1,9,16)$ spanning a three dimensional vector subspace of \mathbb{R}^{4}. It would also show the vector $b=(0,8,8,20)$, and the projection $p=C a_{1}+D a_{2}+E a_{3}$ of b into the three dimensional subspace.

Section 4.3. Problem 26: Find the plane that gives the best fit to the 4 values $b=(0,1,3,4)$ at the corners $(1,0)$ and $(0,1)$ and $(-1,0)$ and $(0,-1)$ of a square. The equations $C+D x+E y=b$ at those 4 points are $A x=b$ with 3 unknowns $x=(C, D, E)$. What is A ? At the center $(0,0)$ of the square, show that $C+D x+E y$ is the average of the b 's.

Solution (12 points)

Note

$$
A=\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & -1 & 0 \\
1 & 0 & -1
\end{array}\right)
$$

To find the best fit plane, we must find x such that $A x-b$ is in the left nullspace of A. Observe

$$
A x-b=\left(\begin{array}{c}
C+D \\
C+E-1 \\
C-D-3 \\
C-E-4
\end{array}\right)
$$

Computing, we find that the first entry of $A^{T}(A x-b)$ is $4 C-8$. This is zero when $C=2$, the average of the entries of b. Plugging in the point $(0,0)$, we get $C+D(0)+E(0)=C=2$ as desired.

Section 4.3. Problem 29: Usually there will be exactly one hyperplane in \mathbb{R}^{n} that contains the n given points $x=0, a_{1}, \ldots, a_{n-1}$. (Example for $\mathrm{n}=3$: There will be exactly one plane containing $0, a_{1}, a_{2}$ unless \qquad .) What is the test to have exactly one hyperplane in \mathbb{R}^{n} ?

Solution (12 points)

The sentence in paranthesis can be completed a couple of different ways. One could write "There will be exactly one plane containing $0, a_{1}, a_{2}$ unless these three points are colinear". Another acceptable answer is "There will be exactly one plane containing $0, a_{1}, a_{2}$ unless the vectors a_{1} and a_{2} are linearly dependent".

In general, $0, a_{1}, \ldots, a_{n-1}$ will be contained in an unique hyperplane unless all of the points $0, a_{1}, \ldots, a_{n-1}$ are contained in an $n-2$ dimensional subspace. Said another way, $0, a_{1}, \ldots, a_{n-1}$ will be contained in an unique hyperplane unless the vectors a_{1}, \ldots, a_{n-1} are linearly dependent.

Section 4.4. Problem 10: Orthonormal vectors are automatically linearly independent.
(a) Vector proof: When $c_{1} q_{1}+c_{2} q_{2}+c_{3} q_{3}=0$, what dot product leads to $c_{1}=0$? Similarly $c_{2}=0$ and $c_{3}=0$. Thus, the q 's are independent.
(b) Matrix proof: Show that $Q x=0$ leads to $x=0$. Since Q may be rectangular, you can use Q^{T} but not Q^{-1}.

Solution (4 points) For part (a): Dotting the expression $c_{1} q_{1}+c_{2} q_{2}+c_{3} q_{3}$ with q_{1}, we get $c_{1}=0$ since $q_{1} \cdot q_{1}=1, q_{1} \cdot q_{2}=q_{1} \cdot q_{3}=0$. Similarly, dotting the expression with q_{2} yields $c_{2}=0$ and dotting the expression with q_{3} yields $c_{3}=0$. Thus, $\left\{q_{1}, q_{2}, q_{3}\right\}$ is a linearly independent set.

For part (b): Let Q be the matrix whose columns are q_{1}, q_{2}, q_{3}. Since Q has orthonormal columns, $Q^{T} Q$ is the three by three identity matrix. Now, multiplying the equation $Q x=0$ on the left by Q^{T} yields $x=0$. Thus, the nullspace of Q is the zero vector and its columns are linearly independent.

Section 4.4. Problem 18: Find the orthonormal vectors A, B, C by GramSchmidt from a, b, c :

$$
a=(1,-1,0,0) \quad b=(0,1,-1,0) \quad c=(0,0,1,-1) .
$$

Show $\{A, B, C\}$ and $\{a, b, c\}$ are bases for the space of vectors perpendicular to $d=(1,1,1,1)$.

Solution (4 points) We apply Gram-Schmidt to a, b, c. We have

$$
A=\frac{a}{\|a\|}=\left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, 0,0\right)
$$

Next,

$$
B=\frac{b-(b \cdot A) A}{\|b-(b \cdot A) A\|}=\frac{\left(\frac{1}{2}, \frac{1}{2},-1,0\right)}{\left\|\left(\frac{1}{2}, \frac{1}{2},-1,0\right)\right\|}=\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}},-\sqrt{\frac{2}{3}}, 0\right) .
$$

Finally,

$$
C=\frac{c-(c \cdot A) A-(c \cdot B) B}{\|c-(c \cdot A) A-(c \cdot B) B\|}=\left(\frac{1}{2 \sqrt{3}}, \frac{1}{2 \sqrt{3}}, \frac{1}{2 \sqrt{3}},-\frac{\sqrt{3}}{2}\right)
$$

Note that $\{a, b, c\}$ is a linearly independent set. Indeed,

$$
x_{1} a+x_{2} b+x_{3} c=\left(x_{1}, x_{2}-x_{1}, x_{3}-x_{2},-x_{3}\right)=(0,0,0,0)
$$

implies that $x_{1}=x_{2}=x_{3}=0$. We check $a \cdot(1,1,1,1)=b \cdot(1,1,1,1)=c \cdot(1,1,1,1)=$ 0 . Hence, all three vectors are in the nullspace of $(1,1,1,1)$. Moreover, the dimension of the column space of the transpose and the dimension of the nullspace sum to the dimension of \mathbb{R}^{4}. Thus, the space of vectors perpendicular to $(1,1,1,1)$ is three dimensional. Since $\{a, b, c\}$ is a linearly independent set in this space, it is a basis.

Since $\{A, B, C\}$ is an orthonormal set, it is a linearly independent set by problem 10. Thus, it must also span the space of vectors perpendicular to $(1,1,1,1)$, and it is also a basis of this space.

Section 4.4. Problem 35: Factor $[Q, R]=\mathbf{q r}(\mathbf{A})$ for $A=\operatorname{eye}(4)-\operatorname{diag}([111],-1)$. You are orthogonalizing the columns $(1,-1,0,0),(0,1,-1,0),(0,0,1,-1)$, and $(0,0,0,1)$ of A. Can you scale the orthogonal columns of Q to get nice integer components?
Solution (12 points) Here is a copy of the matlab code

$$
\gg A=\operatorname{eye}(4)-\operatorname{diag}\left(\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right],-1\right)
$$

$\mathrm{A}=$

1	0	0	0
-1	1	0	0
0	-1	1	0
0	0	-1	1

$\gg[Q, R]=q r(A)$
Q =

-0.7071	-0.4082	-0.2887	0.5000
0.7071	-0.4082	-0.2887	0.5000
0	0.8165	-0.2887	0.5000
0	0	0.8660	0.5000

$\mathrm{R}=$
$\begin{array}{rrrr}-1.4142 & 0.7071 & 0 & 0 \\ 0 & -1.2247 & 0.8165 & 0 \\ 0 & 0 & -1.1547 & 0.8660 \\ 0 & 0 & 0 & 0.5000\end{array}$

Note that scaling the first column by $\sqrt{2}$, the second column by $\sqrt{6}$, the third column by $2 \sqrt{3}$, and the fourth column by 2 yields

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 \\
0 & -2 & 1 & 1 \\
0 & 0 & -3 & 1
\end{array}\right)
$$

Section 4.4. Problem 36: If A is m by $n, \mathbf{q r}(\mathbf{A})$ produces a square A and zeroes below R : The factors from MATLAB are (m by m) (m by n)

$$
A=\left[\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right]\left[\begin{array}{c}
R \\
0
\end{array}\right]
$$

The n columns of Q_{1} are an orthonormal basis for which fundamental subspace? The $m-n$ columns of Q_{2} are an orthonormal basis for which fundamental subspace?

Solution (12 points) The n columns of Q_{1} form an orthonormal basis for the column space of A. The $m-n$ columns of Q_{2} form an orthonormal basis for the left nullspace of A.

Section 5.1. Problem 10: If the entries in every row of A add to zero, solve $A x=0$ to prove $\operatorname{det} A=0$. If those entries add to one, show that $\operatorname{det}(A-I)=0$. Does this mean $\operatorname{det} A=I$?

Solution (4 points) If $x=(1,1, \ldots, 1)$, then the components of $A x$ are the sums of the rows of A. Thus, $A x=0$. Since A has non-zero nullspace, it is not invertible and $\operatorname{det} A=0$. If the entries in every row of A sum to one, then the entries in every row of $A-I$ sum to zero. Hence, $A-I$ has a non-zero nullspace and $\operatorname{det}(A-I)=0$. This does not mean that $\operatorname{det} A=I$. For example if

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

then the entries of every row of A sum to one. However, $\operatorname{det} A=-1$.

Section 5.1. Problem 18: Use row operations to show that the 3 by 3 "Vandermonde determinant" is

$$
\operatorname{det}\left[\begin{array}{ccc}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right]=(b-a)(c-a)(c-b)
$$

Solution (4 points) Doing elimination, we get

$$
\operatorname{det}\left(\begin{array}{ccc}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
1 & a & a^{2} \\
0 & b-a & b^{2}-a^{2} \\
0 & c-a & c^{2}-a^{2}
\end{array}\right)=(b-a) \operatorname{det}\left(\begin{array}{ccc}
1 & a & a^{2} \\
0 & 1 & b+a \\
0 & c-a & c^{2}-a^{2}
\end{array}\right)=
$$

$$
=(b-a) \operatorname{det}\left(\begin{array}{ccc}
1 & a & a^{2} \\
0 & 1 & b+a \\
0 & 0 & (c-a)(c-b)
\end{array}\right)=(b-a)(c-a)(c-b) .
$$

Section 5.1. Problem 31: (MATLAB) The Hilbert matrix hilb(n) has i, j entry equal to $1 /(i+j-1)$. Print the determinants of $\operatorname{hilb}(\mathbf{1}), \operatorname{hilb}(\mathbf{2}), \ldots, \operatorname{hilb}(\mathbf{1 0})$. Hilbert matrices are hard to work with! What are the pivots of hilb(5)?

```
Solution (12 points) Here is the relevant matlab code.
>> [det(hilb(1)) det(hilb(2)) det(hilb(3)) det(hilb(4))
det(hilb(5)) det(hilb(6)) det(hilb(7)) det(hilb(8))
det(hilb(9)) det(hilb(10))]
ans =
        1.0000 0.0833 0.0005 0.0000 0.0000
>> [L,U,P]=lu(hilb(5))
L =
\begin{tabular}{rrrrr}
1.0000 & 0 & 0 & 0 & 0 \\
0.3333 & 1.0000 & 0 & 0 & 0 \\
0.5000 & 1.0000 & 1.0000 & 0 & 0 \\
0.2000 & 0.8000 & -0.9143 & 1.0000 & 0 \\
0.2500 & 0.9000 & -0.6000 & 0.5000 & 1.0000
\end{tabular}
U =
\begin{tabular}{rrrrr}
1.0000 & 0.5000 & 0.3333 & 0.2500 & 0.2000 \\
0 & 0.0833 & 0.0889 & 0.0833 & 0.0762 \\
0 & 0 & -0.0056 & -0.0083 & -0.0095 \\
0 & 0 & 0 & 0.0007 & 0.0015 \\
0 & 0 & 0 & 0 & -0.0000
\end{tabular}
P= 
```

Note that the determinants of the 4th through 10th Hilbert matrices differ from zero by less than one ten thousandth. The pivots of the fifth Hilbert matrix are $1, .0833,-.0056, .0007, .0000$ up to four significant figures. Thus, we see that there is even a pivot of the fifth Hilbert matrix that differs from zero by less than one ten thousandth.

Section 5.1. Problem 32: (MATLAB) What is the typical determinant (experimentally) of $\operatorname{rand}(\mathbf{n})$ and $\operatorname{randn}(\mathbf{n})$ for $n=50,100,200,400$? (And what does "Inf" mean in MATLAB?)

Solution (12 points) This matlab code computes some examples for rand.
$\gg[\operatorname{det}(r a n d(50)) \operatorname{det}(r a n d(50)) \operatorname{det}(r a n d(50)) \operatorname{det}(r a n d(50))$
$\operatorname{det}(r \operatorname{and}(50)) \operatorname{det}(r$ and $(50))]$
ans =
1.0e+06 *
$\begin{array}{llllll}-0.5840 & -1.1620 & -0.0612 & 0.3953 & 0.5149 & -0.0436\end{array}$
$\gg[\operatorname{det}(\operatorname{rand}(100)) \operatorname{det}(\operatorname{rand}(100)) \operatorname{det}(r$ and $(100)) \operatorname{det}(r \operatorname{and}(100))$ $\operatorname{det}(r a n d(100)) \operatorname{det}(r a n d(100))]$
ans $=$

1. $0 \mathrm{e}+26$ *
$\begin{array}{llllll}-0.6288 & -0.0001 & -0.1463 & 0.6322 & 3.5820 & 0.0929\end{array}$
$\gg[\operatorname{det}(r$ and(200)) $\operatorname{det}(r$ and(200)) $\operatorname{det}(r$ and(200)) $\operatorname{det}(r a n d(200))$ $\operatorname{det}(r \operatorname{and}(200)) \operatorname{det}(r$ and (200))]
ans =
$1.0 \mathrm{e}+80$ *
$\begin{array}{llllll}-1.2212 & 0.0246 & 0.1505 & 0.0791 & 8.4722 & -4.5166\end{array}$
$\gg[\operatorname{det}(\operatorname{rand}(400)) \operatorname{det}(\operatorname{rand}(400)) \operatorname{det}(r$ and (400)) $\operatorname{det}(r \operatorname{and}(400))$
$\operatorname{det}(\operatorname{rand}(400)) \operatorname{det}(r \operatorname{and}(400))]$
ans =
2. $0 \mathrm{e}+219$ *

0.4479	1.0835	1.8087	5.5787	-0.3650	5.6855

As you can see, $\operatorname{rand}(\mathbf{5 0})$ is around $10^{5}, \operatorname{rand}(\mathbf{1 0 0})$ is around $10^{25}, \operatorname{rand}(\mathbf{2 0 0})$ is around 10^{79}, and rand (400) is around 10^{219}.
This matlab code computes some examples for randn.

```
>> [det(randn(50)) det(randn(50)) det(randn(50)) det(randn(50))
det(randn(50)) det(randn(50))]
ans =
    1.0e+31 *
        1.2894 -0.0421 0.6148 -0.4418
>> [\operatorname{det}(randn(100)) det(randn(100)) det(randn(100))
det(randn(100)) det(randn(100)) det(randn(100))]
ans =
    1.0e+78 *
    -0.6426 2.7239 -0.6567 2.1435 1.3960
>> [det(randn(200)) det(randn(200)) det(randn(200))
det(randn(200)) det(randn(200)) det(randn(200))]
ans =
    1.0e+187 *
        1.0414 0.0137 0.1884 0.3810
>> [\operatorname{det}(randn(400)) det(randn(400)) det(randn (400))
det(randn(400)) det(randn(400)) det(randn(400))]
ans =
    Inf Inf -Inf -Inf Inf -Inf
```

Note that $\operatorname{randn}(50)$ is around $10^{31}, \operatorname{randn}(\mathbf{1 0 0})$ is around $10^{78}, \operatorname{randn}(\mathbf{2 0 0})$ is around 10^{186}, and $\operatorname{randn}(400)$ is just too big for matlab.

