18.06 Problem Set 2 Solution

Due Thursday, 18 February 2010 at 4 pm in 2-106.
Total: 100 points

Section 2.5. Problem 24: Use Gauss-Jordan elimination on $[U I]$ to find the upper triangular U^{-1} :

$$
U U^{-1}=I \quad\left[\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
& & \\
x_{1} & x_{2} & x_{3}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Solution (4 points): Row reduce $[U I]$ to get $\left[I U^{-1}\right]$ as follows (here R_{i} stands for the i th row):

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
1 & a & b & 1 & 0 & 0 \\
0 & 1 & c & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \longrightarrow \begin{array}{c}
\left(R_{1}=R_{1}-a R_{2}\right) \\
\left(R_{2}=R_{2}-c R_{2}\right)
\end{array}\left[\begin{array}{cccccc}
1 & 0 & b-a c & 1 & -a & 0 \\
0 & 1 & 0 & 0 & 1 & -c \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]} \\
& \longrightarrow\left(R_{1}=R_{1}-(b-a c) R_{3}\right)\left[\begin{array}{cccccc}
1 & 0 & 0 & & 1 & -a \\
a c-b \\
0 & 1 & 0 & & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Section 2.5. Problem 40: (Recommended) A is a 4 by 4 matrix with 1 's on the diagonal and $-a,-b,-c$ on the diagonal above. Find A^{-1} for this bidiagonal matrix.

Solution (12 points): Row reduce $[A I]$ to get $\left[I A^{-1}\right]$ as follows (here R_{i} stands for the i th row):

$$
\left.\begin{array}{c}
{\left[\begin{array}{cccccccc}
1 & -a & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & -b & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & -c & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] .} \\
\\
\\
\\
\left(R_{1}=R_{1}+a R_{2}\right) \\
\left(R_{2}=R_{2}+b R_{2}\right) \\
\left(R_{3}=R_{3}+c R_{4}\right)
\end{array} \begin{array}{cccccccc}
1 & 0 & -a b & 0 & 1 & a & 0 & 0 \\
0 & 1 & 0 & -b c & 0 & 1 & b & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & c \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Alternatively, write $A=I-N$. Then N has a, b, c above the main diagonal, and all other entries equal to 0 . Hence $A^{-1}=(I-N)^{-1}=I+N+N^{2}+N^{3}$ as $N^{4}=0$.

Section 2.6. Problem 13: (Recommended) Compute L and U for the symmetric matrix

$$
A=\left[\begin{array}{llll}
a & a & a & a \\
a & b & b & b \\
a & b & c & c \\
a & b & c & d
\end{array}\right]
$$

Find four conditions on a, b, c, d to get $A=L U$ with four pivots.

Solution (4 points): Elimination subtracts row 1 from rows 2-4, then row 2 from rows 3-4, and finally row 3 from row 4 ; the result is U . All the multipliers $\ell_{i j}$ are equal to 1 ; so L is the lower triangular matrix with 1's on the diagonal and below it.

$$
\begin{aligned}
A & {\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & b-a & c-a & c-a \\
0 & b-a & c-a & d-a
\end{array}\right] \longrightarrow\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & 0 & c-b & c-b \\
0 & 0 & c-b & d-b
\end{array}\right] } \\
& {\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & 0 & c-b & c-b \\
0 & 0 & 0 & d-c
\end{array}\right]=U, \quad L=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right] . }
\end{aligned}
$$

The pivots are the nonzero entries on the diagonal of U. So there are four pivots when these four conditions are satisfied: $a \neq 0, b \neq a, c \neq b$, and $d \neq c$.

Section 2.6. Problem 18: If $A=L D U$ and also $A=L_{1} D_{1} U_{1}$ with all factors invertible, then $L=L_{1}$ and $D=D_{1}$ and $U=U_{1}$. "The three factors are unique."

Derive the equation $L_{1}^{-1} L D=D_{1} U_{1} U^{-1}$. Are the two sides triangular or diagonal? Deduce $L=L_{1}$ and $U=U_{1}$ (they all have diagonal 1's). Then $D=D_{1}$.
Solution (4 points): Notice that $L D U=L_{1} D_{1} U_{1}$. Multiply on the left by L_{1}^{-1} and on the right by U^{-1}, getting

$$
L_{1}^{-1} L D U U^{-1}=L_{1}^{-1} L_{1} D_{1} U_{1} U^{-1} .
$$

But $U U^{-1}=I$ and $L_{1}^{-1} L_{1}=I$. Thus $L_{1}^{-1} L D=D_{1} U_{1} U^{-1}$, as desired.
The left side $L_{1}^{-1} L D$ is lower triangular, and the right side $D_{1} U_{1} U^{-1}$ is upper triangular. But they're equal. So they're both diagonal. Hence $L_{1}^{-1} L$ and $U_{1} U^{-1}$ are diagonal too. But they have diagonal 1's. So they're both equal to I. Thus $L=L_{1}$ and $U=U_{1}$. Also $L_{1}^{-1} L D=D_{1} U_{1} U^{-1}$. Thus $D=D_{1}$.

Section 2.6. Problem 25: For the 6 by 6 second difference constant-diagonal matrix K, put the pivots and multipliers into $K=L U$. (L and U will have only two nonzero diagonals, because K has three.) Find a formula for the i, j entry of L^{-1}, by software like MATLAB using inv(L) or by looking for a nice pattern.

$$
-\mathbf{1}, \mathbf{2},-\mathbf{1} \text { matrix } \quad K=\left[\begin{array}{rccccc}
2 & -1 & & & & \\
-1 & \bullet & \bullet & & & \\
& \bullet & \bullet & \bullet & & \\
& & \bullet & \bullet & \bullet & \\
& & & \bullet & \bullet & -1 \\
& & & & -1 & 2
\end{array}\right]=\operatorname{toeplitz}\left(\left[\begin{array}{llllll}
2 & -1 & 0 & 0 & 0 & 0
\end{array}\right]\right) .
$$

Solution (12 points): Here is the transcript of a session with the software Octave, which is the open-source GNU clone of MATLAB. The decomposition $K=L U$ is found using the teaching code slu.m, available from

```
octave:1> K=toeplitz([2 -1 0 0 0 0]);
octave:2> [L,U]=slu(K);
octave:3> inv(L)
ans =
\begin{tabular}{llllll}
1.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 \\
0.50000 & 1.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 \\
0.33333 & 0.66667 & 1.00000 & 0.00000 & 0.00000 & 0.00000 \\
0.25000 & 0.50000 & 0.75000 & 1.00000 & 0.00000 & 0.00000 \\
0.20000 & 0.40000 & 0.60000 & 0.80000 & 1.00000 & 0.00000 \\
0.16667 & 0.33333 & 0.50000 & 0.66667 & 0.83333 & 1.00000
\end{tabular}
```

So the nice pattern is $\left(L^{-1}\right)_{i j}=j / i$ for $j \leq i$ and $\left(L^{-1}\right)_{i j}=0$ for $j>i$.
Section 2.6. Problem 26: If you print K^{-1}, it doesn't look good. But if you print $7 K^{-1}$ (when K is 6 by 6), that matrix looks wonderful. Write down $7 K^{-1}$ by hand, following this pattern:

1 Row 1 and column 1 are ($6,5,4,3,2,1$).
2 On and above the main diagonal, row i is i times row 1 .
3 On and below the main diagonal, column j is j times column 1.
Multiply K times that $7 K^{-1}$ to produce $7 I$. Here is that pattern for $n=3$:
3 by 3 case
The determinant
of this K is 4

$$
(K)\left(4 K^{-1}\right)=\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]\left[\begin{array}{lll}
3 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 3
\end{array}\right]=\left[\begin{array}{lll}
4 & & \\
& 4 & \\
& & 4
\end{array}\right]
$$

Solution (12 points): For $n=6$, following the pattern yields this matrix:

$$
\left[\begin{array}{cccccc}
6 & 5 & 4 & 3 & 2 & 1 \\
5 & 10 & 8 & 6 & 4 & 2 \\
4 & 8 & 12 & 9 & 6 & 3 \\
3 & 6 & 9 & 12 & 8 & 4 \\
2 & 4 & 6 & 8 & 10 & 5 \\
1 & 2 & 3 & 4 & 5 & 6
\end{array}\right]
$$

Here is the transcript of an Octave session that multiplies K times that $7 K^{-1}$.

```
octave:1> K=toeplitz([2 -1 0 0 0 0]);
octave:2> M=[6 5 4 3 2 1;5 10 8 6 4 2;4 8 12 9 6 3;3 6 9 12 8 4;2 4 6 8 10 5;1 2 3 4 5 6];
octave:3> K*M
ans =
\begin{tabular}{llllll}
7 & 0 & 0 & 0 & 0 & 0 \\
0 & 7 & 0 & 0 & 0 & 0 \\
0 & 0 & 7 & 0 & 0 & 0 \\
0 & 0 & 0 & 7 & 0 & 0 \\
0 & 0 & 0 & 0 & 7 & 0 \\
0 & 0 & 0 & 0 & 0 & 7
\end{tabular}
```

Section 2.7. Problem 13: (a) Find a 3 by 3 permutation matrix with $P^{3}=I$ (but not $P=I$). (b) Find a 4 by 4 permutation \widehat{P} with $\widehat{P}^{4} \neq I$.

Solution (4 points): (a) Let P move the rows in a cycle: the first to the second, the second to the third, and the third to the first. So

$$
P=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \quad P^{2}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right], \quad \text { and } \quad P^{3}=I
$$

(b) Let \widehat{P} be the block diagonal matrix with 1 and P on the diagonal: $\widehat{P}=\left(\begin{array}{ll}1 & 0 \\ 0 & P\end{array}\right)$. Since $P^{3}=I$, also $\widehat{P}^{3}=I$. So $\widehat{P}^{4}=\widehat{P} \neq I$.

Section 2.7. Problem 36: A group of matrices includes $A B$ and A^{-1} if it includes A and B. "Products and inverses stay in the group." Which of these sets are groups?
Lower triangular matrices L with 1's on the diagonal, symmetric matrices S, positive matrices M, diagonal invertible matrices D, permutation matrices P, matrices with $Q^{\mathrm{T}}=Q^{-1}$. Invent two more matrix groups.

Solution (4 points): Yes, the lower triangular matrices L with 1's on the diagonal form a group. Clearly, the product of two is a third. Further, the Gauss-Jordan method shows that the inverse of one is another.

No, the symmetric matrices do not form a group. For example, here are two symmetric matrices A and B whose product $A B$ is not symmetric.

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right], \quad A B=\left[\begin{array}{lll}
2 & 4 & 5 \\
1 & 2 & 3 \\
3 & 5 & 6
\end{array}\right]
$$

No, the positive matrices do not form a group. For example, ($\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is positive, but its inverse $\left(\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right)$ is not.

Yes, clearly, the diagonal invertible matrices form a group.
Yes, clearly, the permutation matrices matrices form a group.
Yes, the matrices with $Q^{\mathrm{T}}=Q^{-1}$ form a group. Indeed, if A and B are two such matrices, then so are $A B$ and A^{-1}, as

$$
(A B)^{\mathrm{T}}=B^{\mathrm{T}} A^{\mathrm{T}}=B^{-1} A^{-1}=(A B)^{-1} \quad \text { and } \quad\left(A^{-1}\right)^{\mathrm{T}}=\left(A^{\mathrm{T}}\right)^{-1}=A^{-1}
$$

There are many more matrix groups. For example, given two, the block matrices $\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$ form a third as A ranges over the first group and B ranges over the second. Another example is the set of all products $c P$ where c is a nonzero scalar and P is a permutation matrix of given size.

Section 2.7. Problem 40: Suppose Q^{T} equals Q^{-1} (transpose equal inverse, so $Q^{\mathrm{T}} Q=I$).
(a) Show that the columns q_{1}, \ldots, q_{n} are unit vectors: $\left\|q_{i}\right\|^{2}=1$.
(b) Show that every two distinct columns of Q are perpendicular: $q_{i}^{\mathrm{T}} q_{j}=0$ for $i \neq j$.
(c) Find a 2 by 2 example with first entry $q_{11}=\cos \theta$.

Solution (12 points): In any case, the $i j$ entry of $Q^{\mathrm{T}} Q$ is $q_{i}^{\mathrm{T}} q_{j}$. So $Q^{\mathrm{T}} Q=I$ leads to (a) $q_{i}^{\mathrm{T}} q_{i}=1$

Section 3.1. Problem 18: True or false (check addition or give a counterexample):
(a) The symmetric matrices in \mathbf{M} (with $A^{\mathrm{T}}=A$) form a subspace.
(b) The skew-symmetric matrices in \mathbf{M} (with $A^{\mathrm{T}}=-A$) form a subspace.
(c) The unsymmetric matrices in \mathbf{M} (with $A^{\mathrm{T}} \neq A$) form a subspace.

Solution (4 points): (a) True: $A^{\mathrm{T}}=A$ and $B^{\mathrm{T}}=B$ lead to $(A+B)^{\mathrm{T}}=A^{\mathrm{T}}+B^{\mathrm{T}}=A+B$.
(b) True: $A^{\mathrm{T}}=-A$ and $B^{\mathrm{T}}=-B$ lead to $(A+B)^{\mathrm{T}}=A^{\mathrm{T}}+B^{\mathrm{T}}=-A-B=-(A+B)$.
(c) False: $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)+\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$.

Section 3.1. Problem 23: (Recommended) If we add an extra column b to a matrix A, then the column space gets larger unless \qquad . Give an example where the column space gets larger and an example where it doesn't. Why is $A x=b$ solvable exactly when the column space doesn't get larger-it is the same for A and $[A b]$?

Solution (4 points): The column space gets larger unless it contains b; that is, b is a linear combination of the columns of A. For example, let $A=\left(\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right)$; then the column space gets larger if $b=\binom{0}{1}$ and it doesn't if $b=\binom{1}{0}$. The equation $A x=b$ is solvable exactly when b is a (nontrivial) linear combination of the columns of A (with the components of x as combining coefficients); so $A x=b$ is solvable exactly when b lies in the column space, so exactly when the column space doesn't get larger.

Section 3.1. Problem 30: Suppose \mathbf{S} and \mathbf{T} are two subspaces of a vector space \mathbf{V}.
(a) Definition: The sum $\mathbf{S}+\mathbf{T}$ contains all sums $\mathbf{s}+\mathbf{t}$ of a vector \mathbf{s} in \mathbf{S} and a vector \mathbf{t} in \mathbf{T}. Show that $\mathbf{S}+\mathbf{T}$ satisfies the requirements (addition and scalar multiplication) for a vector space.
(b) If \mathbf{S} and \mathbf{T} are lines in \mathbf{R}^{m}, what is the difference between $\mathbf{S}+\mathbf{T}$ and $\mathbf{S} \cup \mathbf{T}$? That union contains all vectors from \mathbf{S} and \mathbf{T} or both. Explain this statement: The span of $\mathbf{S} \cup \mathbf{T}$ is $\mathbf{S}+\mathbf{T}$. (Section 3.5 returns to this word "span.")

Solution (12 points): (a) Let $\mathbf{s}, \mathbf{s}^{\prime}$ be vectors in \mathbf{S}, let $\mathbf{t}, \mathbf{t}^{\prime}$ be vectors in \mathbf{T}, and let c be a scalar. Then

$$
(\mathbf{s}+\mathbf{t})+\left(\mathbf{s}^{\prime}+\mathbf{t}^{\prime}\right)=\left(\mathbf{s}+\mathbf{s}^{\prime}\right)+\left(\mathbf{t}+\mathbf{t}^{\prime}\right) \quad \text { and } \quad c(\mathbf{s}+\mathbf{t})=c \mathbf{s}+c \mathbf{t} .
$$

Thus $\mathbf{S}+\mathbf{T}$ is closed under addition and scalar multiplication; in other words, it satisfies the two requirements for a vector space.
(b) If \mathbf{S} and \mathbf{T} are distinct lines, then $\mathbf{S}+\mathbf{T}$ is a plane, whereas $\mathbf{S} \cup \mathbf{T}$ is not even closed under addition. The span of $\mathbf{S} \cup \mathbf{T}$ is the set of all combinations of vectors in this union. In particular, it contains all sums $\mathbf{s}+\mathbf{t}$ of a vector \mathbf{s} in \mathbf{S} and a vector \mathbf{t} in \mathbf{T}, and these sums form $\mathbf{S}+\mathbf{T}$. On the other hand, $\mathbf{S}+\mathbf{T}$ contains both \mathbf{S} and \mathbf{T}; so it contains $\mathbf{S} \cup \mathbf{T}$. Further, $\mathbf{S}+\mathbf{T}$ is a vector space. So it contains all combinations of vectors in itself; in particular, it contains the span of $\mathbf{S} \cup \mathbf{T}$. Thus the span of $\mathbf{S} \cup \mathbf{T}$ is $\mathbf{S}+\mathbf{T}$.

Section 3.1. Problem 32: Show that the matrices A and $[A A B]$ (with extra columns) have the same column space. But find a square matrix with $\mathbf{C}\left(A^{2}\right)$ smaller than $\mathbf{C}(A)$. Important point:
An n by n matrix has $\mathbf{C}(A)=\mathbf{R}^{n}$ exactly when A is an \qquad matrix.

Solution (12 points): Each column of $A B$ is a combination of the columns of A (the combining coefficients are the entries in the corresponding column of B). So any combination of the columns of $[A A B$] is a combination of the columns of A alone. Thus A and $[A A B]$ have the same column space.

Let $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. Then $A^{2}=0$, so $\mathbf{C}\left(A^{2}\right)=\mathbf{Z}$. But $\mathbf{C}(A)$ is the line through $\binom{1}{0}$.
An n by n matrix has $\mathbf{C}(A)=\mathbf{R}^{n}$ exactly when A is an invertible matrix, because $A x=b$ is solvable for any given b exactly when A is invertible.

