18.06 Problem Set 10 Solution

Due Thursday, 29 April 2009 at 4 pm in 2-106.
Total: 100 points

Section 6.6. Problem 12. These Jordan matrices have eigenvalues $0,0,0,0$. They have two eigenvectors (one from each block). But the block sizes don't match and they are not similar:

$$
J=\left(\begin{array}{cc|cc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \text { and } \quad K=\left(\begin{array}{ccc|c}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0
\end{array}\right)
$$

For any matrix M, compare $J M$ with $M K$. If they are equal show that M is not invertible. Then $M^{-1} J M=K$ is impossible; J is not similar to K.

Solution (4 points) Let $M=\left(m_{i j}\right)$. Then

$$
J M=\left(\begin{array}{cccc}
m_{21} & m_{22} & m_{23} & m_{24} \\
0 & 0 & 0 & 0 \\
m_{41} & m_{42} & m_{43} & m_{44} \\
0 & 0 & 0 & 0
\end{array}\right) \quad \text { and } \quad M K=\left(\begin{array}{cccc}
0 & m_{11} & m_{12} & 0 \\
0 & m_{21} & m_{22} & 0 \\
0 & m_{31} & m_{32} & 0 \\
0 & m_{41} & m_{42} & 0
\end{array}\right) .
$$

If $J M=M K$ then

$$
m_{21}=m_{22}=m_{24}=m_{41}=m_{42}=m_{44}=0,
$$

which in particular means that the second row is either a multiple of the fourth row, or the fourth row is all 0 's. In either of these cases M is not invertible.

Suppose that J were similar to K. Then there would be some invertible matrix M such that $K=M^{-1} J M$, which would mean that $M K=J M$. But we just showed that in this case M is never invertible! Contradiction. Thus J is not similar to K.

Section 6.6. Problem 14. Prove that A^{T} is always similar to A (we know that the λ 's are the same):

1. For one Jordan block J_{i} : find M_{i} so that $M_{i}^{-1} J_{i} M_{i}=J_{i}^{T}$ (see example 3).
2. For any J with blocks J_{i} : build M_{0} from blocks so that $M_{0}^{-1} J M_{0}=J^{T}$.
3. For any $A=M J M^{-1}$: Show that A^{T} is similar to J^{T} and so to J and so to A.

Solution (4 points)

1. Suppose that we have one Jordan block J_{i}. Then
so J is similar to J^{T}.
2. Suppose that each J_{i} satisfies $J_{i}^{T}=M_{i}^{-1} J_{i} M_{i}$. Let M_{0} be the block-diagonal matrix consisting of the M_{i} 's along the diagonal. Then

$$
\begin{aligned}
& M_{0}^{-1} J M_{0}=\left(\begin{array}{cccc}
M_{1}^{-1} & & & \\
& M_{2}^{-1} & & \\
& & \ddots & \\
& & & M_{n}^{-1}
\end{array}\right)\left(\begin{array}{llll}
J_{1} & & & \\
& J_{2} & & \\
& & \ddots & \\
& & & J_{n}
\end{array}\right)\left(\begin{array}{llll}
M_{1} & & & \\
& M_{2} & & \\
& & \ddots & \\
& & & M_{n}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
M_{1}^{-1} J_{1} M_{1} & & & \\
& M_{2}^{-1} J_{2} M_{2} & & \\
& & \ddots & \\
& & & M_{n}^{-1} J_{n} M_{n}
\end{array}\right) \\
& =\left(\begin{array}{llll}
J_{1}^{T} & & & \\
& J_{2}^{T} & & \\
& & \ddots & \\
& & & J_{n}^{T}
\end{array}\right)=J^{T}
\end{aligned}
$$

3.

$$
A^{T}=\left(M J M^{-1}\right)^{T}=\left(M^{-1}\right)^{T} J^{T} M^{T}=\left(M^{T}\right)^{-1} J^{T}\left(M^{T}\right)
$$

So A^{T} is similar to J^{T}, which is similar to J, which is similar to A. Thus any matrix is similar to its transpose.

Section 6.6. Problem 20. Why are these statements all true?
(a) If A is similar to B then A^{2} is similar to B^{2}.
(b) A^{2} and B^{2} can be similar when A and B are not similar.
(c) $\left(\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right)$ is similar to $\left(\begin{array}{ll}3 & 1 \\ 0 & 4\end{array}\right)$.
(d) $\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$ is not similar to $\left(\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right)$.
(e) If we exchange rows 1 and 2 of A, and then exchange columns 1 and 2 the eigenvalues stay the same. In this case $M=$?

Solution (4 points)

(a) If A is similar to B then we can write $A=M^{-1} B M$ for some M. Then $A^{2}=M^{-1} B^{2} M$, so A^{2} is similar to B^{2}.
(b) Let

$$
A=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \quad B=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

Then $A^{2}=B^{2}$ (so they are obviously similar) but A is not similar to B because nothing but the zero matrix is similar to the zero matrix.
(c)

$$
\left(\begin{array}{ll}
3 & 0 \\
0 & 4
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 1 \\
0 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

(d) These are not similar because the first matrix has a plane of eigenvectors for the eigenvalue 3 , while the second only has a line.
(e) In order to exchange two rows of A we multiply on the left by

$$
M=\left(\begin{array}{llll}
0 & 1 & & \\
1 & 0 & & \\
& & 1 & \\
& & & 1
\end{array}\right)
$$

In order to exchange two columns we multiply on the right by the same M. As $M=M^{-1}$ we see that the new matrix is similar to the old one, so the eigenvalues stay the same.

Section 6.6. Problem 22. If an $n \times n$ matrix A has all eigenvalues $\lambda=0$ prove that A^{n} is the zero matrix.

Solution (12 points) Suppose that we have a Jordan block of size i with eigenvalue 0 . Then notice that J^{2} will have a diagonal of 1 's two diagonals above the main diagonal and zeroes elsewhere. J^{3} will have a diagonal of 1 's three diagonals above the main diagonal, and zeroes elsewhere. Therefore $J^{i}=0$, since there is no diagonal i diagonals above the main diagonal. If A has all eigenvalues $\lambda=0$ then then A is similar to some matrix with Jordan blocks J_{1}, \ldots, J_{k} with each J_{i} of size n_{i} and $\sum_{i=1}^{k} n_{k}=n$. Each Jordan block will have eigenvalue 0 , so we know that $J_{i}^{n_{i}}=0$, and thus $J_{i}^{n}=0$.

As A^{n} is similar to a block-diagonal matrix with blocks $J_{1}^{n}, J_{2}^{n}, \ldots, J_{k}^{n}$ and each of these is 0 we know that $A^{n}=0$.

Another way to see this is to note that if A has all eigenvalues 0 this means that the characteristic polynomial of A must be x^{n}, as this is the only polynomial of degree n all of whose roots are 0 . Thus $A^{n}=0$ by the Cayley-Hamilton theorem.

Section 6.6. Problem 23. For the shifted $Q R$ method in the Worked Example 6.6 B , show that A_{2} is similar to A_{1}. No change in eigenvalues, and the A 's quickly approach a diagonal matrix.

Solution (12 points) We are asked to show that $A_{2}=R_{1} Q_{1}-c s^{2} I$ is similar to $A_{1}=Q_{1} R_{1}-c s^{2} I$. Note that

$$
Q_{1} A_{2} Q_{1}^{-1}=Q_{1}\left(R_{1} Q_{1}-c s^{2} I\right) Q_{1}^{-1}=Q_{1} R_{1}-Q_{1} c s^{2} I Q_{1}^{-1}=Q_{1} R_{1}-c s^{2} I=A_{1}
$$

Thus A_{2} is similar to A_{1}, and thus their eigenvalues are the same.

Section 6.6. Problem 24. If A is similar to A^{-1}, must all the eigenvalues equal 1 or -1 ?

Solution (12 points)
No. Consider:

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & \frac{1}{2}
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)^{-1}\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Thus $\left(\begin{array}{cc}2 & 0 \\ 0 & \frac{1}{2}\end{array}\right)$ is similar to $\left(\begin{array}{cc}2 & 0 \\ 0 & \frac{1}{2}\end{array}\right)^{-1}$.

Section 6.7. Problem 4. Find the eigenvalues and unit eigenvectors of $A^{T} A$ and $A A^{T}$. Keep each $A v=\sigma u$ for the Fibonacci matrix $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$. Construct the singular value decomposition and verify that A equal $s U \Sigma V^{T}$.

Solution (4 points)

$$
A^{T} A=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \quad A A^{T}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)
$$

Note that these are the same. (This makes sense, as A is symmetric.) The eigenvalues of this are the roots of $x^{2}-3 x+1$, which are $(3 \pm \sqrt{5}) / 2$. The unit eigenvectors of this will be

$$
\binom{\sqrt{\frac{2}{5-\sqrt{5}}}}{\sqrt{\frac{3-\sqrt{5}}{5-\sqrt{5}}}} \quad \text { and } \quad\binom{\sqrt{\frac{3-\sqrt{5}}{5-\sqrt{5}}}}{-\sqrt{\frac{2}{5-\sqrt{5}}}} .
$$

Then

$$
U=\left(\begin{array}{cc}
\sqrt{\frac{2}{5-\sqrt{5}}} & -\sqrt{\frac{3-\sqrt{5}}{5-\sqrt{5}}} \\
\sqrt{\frac{3-\sqrt{5}}{5-\sqrt{5}}} & \sqrt{\frac{2}{5-\sqrt{5}}}
\end{array}\right) \quad V=\left(\begin{array}{cc}
\sqrt{\frac{2}{5-\sqrt{5}}} & \sqrt{\frac{3-\sqrt{5}}{5-\sqrt{5}}} \\
\sqrt{\frac{3-\sqrt{5}}{5-\sqrt{5}}} & -\sqrt{\frac{2}{5-\sqrt{5}}}
\end{array}\right)
$$

and

$$
\Sigma=\left(\begin{array}{ll}
\frac{1+\sqrt{5}}{2} & \\
& \frac{\sqrt{5}-1}{2}
\end{array}\right)
$$

Section 6.7. Problem 11. Suppose A has orthogonal columns w_{1}, \ldots, w_{n} of lengths $\sigma_{1}, \ldots, \sigma_{n}$. What are U, Σ and V in the SVD?

Solution (4 points) We will first solve this assuming all of the w_{i} are nonzero; at the end we will give a modification for the solution in the case that some are 0 . As the columns of A are orthogonal we know that $A^{T} A$ will be a diagonal matrix with diagonal entries $\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}$. Thus $U=I$ and Σ is the diagonal matrix with entries $\sigma_{1}, \ldots, \sigma_{n}$. Then if we define V to be the matrix whose i-th row is the vector w_{i} / σ_{i} we will have $A=U \Sigma V^{T}$, as desired.

Suppose that some of w_{i} are zero. Take all of the w 's that are nonzero and complete them to an orthogonal basis u_{1}, \ldots, u_{n} satisfying the conditions that if $w_{i} \neq 0$ then $u_{i}=w_{i}$, and if $w_{i}=0$ then $\left|u_{i}\right|=1$. Then let U, Σ be as above, and V be the matrix whose i-th row is w_{i} / σ_{i} if $\sigma_{i} \neq 0$, and u_{i} if $\sigma_{i}=0$. Then $A=U \Sigma V^{T}$, as desired.

Section 6.7. Problem 17. The $1,-1$ first difference matrix A has $A^{T} A$ the second difference matrix. The singular vectors of A are sine vectors V and cosine vectors u. Then $A v=\sigma u$ is the discrete form of $d / d x(\sin c x)=c(\cos c x)$. This is the best SVD I have seen.

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1 \\
0 & 0 & -1
\end{array}\right) \quad A^{T} A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

Then the orthogonal sine matrix is

$$
V=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
\sin \pi / 4 & \sin 2 \pi / 4 & \sin 3 \pi / 4 \\
\sin 2 \pi / 4 & \sin 4 \pi / 4 & \sin 6 \pi / 4 \\
\sin 3 \pi / 4 & \sin 6 \pi / 4 \sin 9 \pi / 4 &
\end{array}\right) .
$$

(a) Put numbers in V : The unit eigenvectors of $A^{T} A$ are singular vectors of A. Show that the columns of V have $A^{T} A v=\lambda v$ with $\lambda=2-\sqrt{2}, 2,2+\sqrt{2}$.
(b) Multiply $A V$ and verify taht its columns are orthogonal. They are $\sigma_{1} u_{1}$ and $\sigma_{2} u_{2}$ and $\sigma_{3} u_{3}$. The first columns of the cosine matrix U are u_{1}, u_{2}, u_{3}.
(c) Since A is 4×3 weneed a fourth orthogonal vector u_{4}. It comes from the nullspace of A^{T}. What is u_{4} ?

Solution (12 points)

(a) We are asked to show that the columns of V are eigenvectors of $A^{T} A$. The characteristic polynomial of $A^{T} A$ is $x^{3}-6 x^{2}+10 x-4$, which can be factored as $(x-2)\left(x^{2}-4 x+2\right)$. By the quadratic formua the roots of this are exactly the eigenvalues specified.
Note that

$$
V=\left(\begin{array}{ccc}
1 / 2 & 1 / \sqrt{2} & 1 / 2 \\
1 / \sqrt{2} & 0 & -1 / \sqrt{2} \\
1 / 2 & -1 / \sqrt{2} & 1 / 2
\end{array}\right)
$$

Then note that the three vectors $\left(\begin{array}{c}1 \\ \sqrt{2} \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right),\left(\begin{array}{c}1 \\ -\sqrt{2} \\ 1\end{array}\right)$ are scalar multiples of the columns of V, and it is easy to check that they are indeed eigenvectors of $A^{T} A$ with the right eigenvalues.
(b)

$$
A V=\frac{1}{2}\left(\begin{array}{ccc}
1 & \sqrt{2} & 1 \\
\sqrt{2}-1 & -\sqrt{2} & -\sqrt{2}-1 \\
1-\sqrt{2} & -\sqrt{2} & 1+\sqrt{2} \\
-1 & \sqrt{2} & -1
\end{array}\right)
$$

It is easy to check that these columns are orthogonal.
(c) Note that $A^{T}=\left(\begin{array}{cccc}1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1\end{array}\right)$. The nullspace of this is generated by $\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$.

Section 8.5. Problem 4. The first three Legendre polynomials are 1, $x, x^{2}-1 / 3$. Choose c so that the fourth polynomial $x^{3}-c x$ is orthogonal to the first three. All integrals go from -1 to 1 .

Solution (4 points) We compute
$\int_{-1}^{1} x^{3}-c x d x=0 \quad \int_{-1}^{1}\left(x^{3}-c x\right) x d x=\frac{2}{5}-\frac{2}{3} c \quad \int_{-1}^{1}\left(x^{3}-c x\right)\left(x^{2}-\frac{1}{3}\right) d x=0$.
Thus in order for $x^{3}-c x$ to be orthogonal to the other three we need $c=3 / 5$.
Section 8.5. Problem 5. For the square wave $f(x)$ in Example 3 show that

$$
\int_{0}^{2 \pi} f(x) \cos x d x=0 \quad \int_{0}^{2 \pi} f(x) \sin x d x=4 \quad \int_{0}^{2 \pi} f(x) \sin 2 x d x=0
$$

Which three Fourier coefficients come from those integrals?
Solution (4 points) By definition, coefficients that come from these are a_{1}, b_{1}, b_{2}, respectively. We compute

$$
\begin{aligned}
\int_{0}^{2 \pi} f(x) \cos x d x & =\int_{0}^{\pi} \cos x d x-\int_{\pi}^{2 \pi} \cos x d x=0 \\
\int_{0}^{2 \pi} f(x) \sin x d x & =\int_{0}^{\pi} \sin x d x-\int_{\pi}^{2 \pi} \sin x d x=4 \\
\int_{0}^{2 \pi} f(x) \sin 2 x d x & =\int_{0}^{\pi} \sin 2 x d x-\int_{\pi}^{2 \pi} \sin 2 x d x=0
\end{aligned}
$$

Section 8.5. Problem 12. The functions $1, \cos x, \sin x, \cos 2 x, \sin 2 x, \ldots$ are a basis for a Hilberts space. Write the derivatives of those first five functions as combinations of the same five functions. What is the 5×5 "differentiation matrix" for those functions?

Solution (12 points)
We know that $1^{\prime}=0$, and that
$(\cos x)^{\prime}=-\sin x \quad(\sin x)^{\prime}=\cos x \quad(\cos 2 x)^{\prime}=-2 \sin 2 x \quad(\sin 2 x)^{\prime}=2 \cos 2 x$.
Thus the "differentiation matrix" is

$$
\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -2 \\
0 & 0 & 0 & 2 & 0
\end{array}\right) .
$$

Section 8.5. Problem 13. Find the Fourier coefficients a_{k} and b_{k} of the square pulse $F(x)$ centered at $x=0: \quad f(x)=1 / h$ for $|x| \leq h / 2$ and $F(x)=0$ for $h / 2<$ $|x| \leq \pi$. As $h \rightarrow 0$, this $F(x)$ approaches a delta function. Find the limits of a_{k} and b_{k}.

Solution (12 points) We compute

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} F(x) d x=\frac{1}{h \pi} \int_{-h / 2}^{h / 2} 1 d x=\frac{1}{\pi} . \\
& a_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} F(x) \cos k x d x=\frac{1}{\pi h} \int_{-h / 2}^{h / 2} \cos k x d x=\left.\frac{1}{\pi h k} \sin k x\right|_{-h / 2} ^{h / 2}=\frac{2}{\pi h k} \sin \frac{k h}{2} . \\
& b_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} F(x) \sin k x d x=\frac{1}{\pi h} \int_{-h / 2}^{h / 2} \sin k x d x=\left.\frac{1}{\pi k} \cos k x\right|_{-h / 2} ^{h / 2}=0 .
\end{aligned}
$$

Thus as $h \rightarrow 0$ we see that $a_{0} \rightarrow 1 / \pi$ and $b_{k} \rightarrow 0$. We also compute

$$
\lim _{h \rightarrow 0} a_{k}=\lim _{h \rightarrow 0} \frac{1}{\pi} \frac{2}{h k} \sin \frac{h k}{2}=\frac{1}{\pi} \lim _{x \rightarrow 0} \frac{\sin x}{x}=\frac{1}{\pi}
$$

where we set $x=h k / 2$.

