18.06 Quiz 2 Solution

Hold on Wednesday, 1 April 2009 at 11am in Walker Gym.
Total: 70 points.

Problem 1:

(a) If P is the projection matrix onto the null space of A, then $P \mathbf{y}-\mathbf{y}$, for any \mathbf{y}, is in the \qquad space of A.
(b) If $A \mathbf{x}=\mathbf{b}$ has a solution \mathbf{x}, then the closest vector to \mathbf{b} in $N\left(A^{\mathrm{T}}\right)$ is \qquad (best answer).
(c) If the rows of A (an $m \times n$ matrix) are independent, then the dimension of $N\left(A^{\mathrm{T}} A\right)$ is \qquad
(d) If a matrix U has orthonormal rows, then $I=$ \qquad and the projection matrix onto the row space of U is \qquad (Your answers should be the simplest expressions involving U and U^{T} only.)

Solution (20 points $=5+5+5+5$)

Answers: (a) row; (b) 0 ; (c) $n-m$; (d) $U U^{\mathrm{T}}, U^{\mathrm{T}} U$.
(a) Since $P \mathbf{y}$ is the projection to the nullspace of $A, P \mathbf{y}-\mathbf{y}$ is orthogonal to the null space; it then must lie in the row space of A.
(b) Since $A \mathbf{x}=\mathbf{b}$ has a solution \mathbf{x}, \mathbf{b} is in the column space $C(A)$ of A. We know that the left nullspace $N\left(A^{\mathrm{T}}\right)$ is orthogonal to the column space. So the closest vector to \mathbf{b} is 0 .
(c) We derived in Problem 7 of Pset 4 that the nullspace of $A^{\mathrm{T}} A$ is the same as the nullspace of A; the latter has dimension $n-m$ because the matrix A is of full row rank m.

Alternatively, we also derived the following in lecture, and it is in the text, and on the practice-exam handout: the ranks of A and $A^{\mathrm{T}} A$ are the same, so both equal to m. Since A has full row rank and $A^{\mathrm{T}} A$ has n columns, $N\left(A^{\mathrm{T}} A\right)$ has dimension $n-m$.
(d) Note that $U^{\mathrm{T}}=Q$, a matrix with orthonormal columns. We saw in class that $I=Q^{\mathrm{T}} Q=U U^{\mathrm{T}}$, and the projection matrix onto $C(Q)=C\left(U^{\mathrm{T}}\right)$ is $Q Q^{\mathrm{T}}=U^{\mathrm{T}} U$.

Problem 2: The matrix

$$
A=\left(\begin{array}{cccc}
1 & 2 & 1 & -7 \\
2 & 4 & 1 & -5 \\
1 & 2 & 2 & -16
\end{array}\right)
$$

is converted to row-reduced echelon form by the usual row-elimination steps, resulting in the matrix:

$$
R=\left(\begin{array}{cccc}
1 & 2 & 0 & 2 \\
0 & 0 & 1 & -9 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(\&) The minimum number of columns of A that form a dependent set of vectors is
\qquad The maximum number of columns of A that forms an independent set of vectors is \qquad .
(\diamond) Give an orthonormal basis for the row space of A. (Careful: be sure you start with a basis for the row space, not containing any dependent vectors.) Your answer may contain square roots left as $\sqrt{\text { some number. }}$
$(\boldsymbol{\oplus})$ Given the vector $\mathbf{b}=\left(\begin{array}{llll}2 & 5 & -9 & 3\end{array}\right)^{\mathrm{T}}$, compute the closest vector \mathbf{p} to \mathbf{b} in the row space $C\left(A^{\mathrm{T}}\right)$? (Hint: less calculation is needed if you use your answer from \diamond.)
(Ω) In terms of your answer \mathbf{p} to $\boldsymbol{\phi}$ above, what is the closest vector to \mathbf{b} in the nullspace $N(A)$? (No calculation required, and you need not have solved $\boldsymbol{\oplus}$: you can leave your answer in terms of \mathbf{p} and \mathbf{b}.)

Solution (30 points $=6+10+10+4$)
Answers: (\&) 2,$2 ;(\diamond)$ see below; $(\boldsymbol{\phi}) \mathbf{p}=\left(\begin{array}{lll}2 & 4 & 0\end{array}\right)^{\mathrm{T}} ;(\Omega) \mathbf{b}-\mathbf{p}$.
(\&) The key point of the problem is that the dependency of columns in R and A is the same. By inspection of R (or A), the first two columns are dependent, so that is the smallest dependent set. R has two pivots, so A is rank 2 and the column space is 2-dimensional, so 2 is the maximum number of independent columns. Equivalently, the maximum number of independent columns is the number of columns in any basis for $C(A)$, such as the 2 pivot columns.
(\diamond) Note that the (row-reduced) echelon form R has the same row space as A. We may therefore start Gram-Schmidt on the pivot rows of R, which form a basis
for the row space of R and A.

$$
\left.\begin{array}{rl}
\mathbf{q}_{1} & =\frac{\mathbf{a}_{1}}{\left\|\mathbf{a}_{1}\right\|}=\left(\begin{array}{lll}
\frac{1}{3} & \frac{2}{3} & 0
\end{array} \frac{2}{3}\right.
\end{array}\right)^{\mathrm{T}} .
$$

REMARK: One can also obtain an orthonormal basis by starting with 2 rows of A since in this case any 2 rows are independent and form a basis. But the pivot rows of R are a nicer basis (more zeros), and the calculations are therefore much simpler.
$(\boldsymbol{\oplus})$ The closest vector \mathbf{p} should be given by the projection to the row space. That is

$$
\mathbf{p}=\mathbf{p}^{\mathrm{T}} \mathbf{q}_{1} \mathbf{q}_{1}+\mathbf{p}^{\mathrm{T}} \mathbf{q}_{2} \mathbf{q}_{2}=6 \cdot\left(\begin{array}{llll}
\frac{1}{3} & \frac{2}{3} & 0 & \frac{2}{3}
\end{array}\right)^{\mathrm{T}}+0=\left(\begin{array}{lll}
2 & 4 & 0
\end{array}\right)^{\mathrm{T}} .
$$

(\bigcirc) The closest vector \mathbf{p} of \mathbf{b} in the row space is exactly the projection in the row space. But the row space and the nullspace are orthogonal to each other. Then, $\mathbf{b}-\mathbf{p}$ is exactly the orthogonal projection in the nullspace $N(A)$; it is the closest vector to \mathbf{b} in the nullspace.

Problem 3: You are told that the least-square linear fit to three points $\left(0, b_{1}\right)$, $\left(1, b_{2}\right)$, and $\left(2, b_{3}\right)$ is $C+D t$ for $C=1$ and $D=-2$. That is, the fit is $1-2 t$.

In this question, you will work backwards from this fit to reason about the unknown values $\mathbf{b}=\left(\begin{array}{lll}b_{1} & b_{2} & b_{3}\end{array}\right)^{T}$ at the coordinates $t=0,1,2$.
(i) Write down the explicit equations that \mathbf{b} must satisfy for $1-2 t$ to be the least-square linear fit. (The points do not have to fall exactly on the line.)
(ii) If all the points fall exactly on the line $1-2 t$, then $\mathbf{b}=$ \qquad Check that this satisfies your equations in (i).
(iii) More generally, if all the points fall exactly on any straight line, then \mathbf{b} is in the \qquad space of what matrix? (Write down the matrix.)

Solution (20 points $=10+5+5$)

Answers: (i) see below; (ii) $\mathbf{b}=(1-1-3)$; (iii) see below.
(i) The system that we would solve if the line passed exactly through all of the points is

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right)\binom{C}{D}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

However, since the line may not pass through all the points this system may have no solution, and instead we find the least-square solution by solving the normal equations:

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right)\binom{C}{D}=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

That is

$$
\left(\begin{array}{ll}
3 & 3 \\
3 & 5
\end{array}\right)\binom{C}{D}=\binom{b_{1}+b_{2}+b_{3}}{b_{2}+2 b_{3}}
$$

Since the least-square fit is $1-2 t$, the above linear system has solution $(1-2)^{\mathrm{T}}$. Hence, b_{1}, b_{2}, b_{3} should satisfy

$$
\begin{aligned}
b_{1}+b_{2}+b_{3} & =-3 \\
b_{2}+2 b_{3} & =-7
\end{aligned}
$$

(ii) If all the points fall exactly on the line $1-2 t$,

$$
b_{1}=1-2 \cdot 0=1, \quad b_{2}=1-2 \cdot 1=-1, \quad b_{3}=1-2 \cdot 2=-3 .
$$

We plug the solution back in the relations above and check.

$$
1-1-3=-3, \quad-1+2 \times(-3)=-7 .
$$

(iii) If all points fall exactly on a straight line, the following system would have a solution.

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right)\binom{C}{D}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) .
$$

In other words, \mathbf{b} lies in the column space of the matrix

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right) .
$$

