
18.06 Problem Set 9 Solution
Due Wednesday, 29 April 2009 at 4 pm in 2-106.

Total: 130 points.

Problem 1: Let A =

(
1 s
1 3

)
, where s is some real number.

(a) Give a value of s where A is defective; use this s in the subsequent parts.

(b) Compute a set of eigenvectors and generalized eigenvectors (as defined in the
handout) of A to give a complete basis for R2. (Use this basis in the subsequent
parts.)

(c) For the column vector ~u0 = (1, 0)T, compute ~u(t) = (I + eAt)−1~u0 (as an
explicit formula with no matrix operations). (Hint: use the formula for f(A)
from the handout; note that I = A0.)

(d) For the column vector ~u0 = (1, 0)T, compute ~uk = Ak~u0 (as an explicit formula
with no matrix operations).

(e) Write an explicit formula for Ak, for any k (as an explicit formula with no
matrix operations). (Consider your answer for the previous part, and ask
what matrix you would multiply by an arbitrary vector to obtain Ak times
that vector.)

(f) Suppose we perturb the matrix slightly, changing s to s + 0.0001. Does ‖~uk‖
grow more slowly or more quickly with k than when A was defective?

Solution (30 points = 5+5+5+5+5+5)
(a) Since we need A to be defective, its two eigenvalues must be the same.

det(A− λI) = λ2 − 4λ+ (3− s) = 0. It has repeated roots when 3− s = 4, that is

when s = −1. In this case, A =

(
1 −1
1 3

)
.

(b) When s = −1, solving det(A− λI) = λ2 − 4λ+ 4 = 0 gives λ = 2.

A− λI =

(
−1 −1
1 1

)
⇒ ~v1 =

(
1
−1

)
.
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To find the generalized eigenvector, we solve the linear system

(A− λI)~v′1 = ~v1 ;

(
−1 −1
1 1

)
~v′1 =

(
1
−1

)
.

We can find a particular solution ~v′1 =

(
−1
0

)
. Then, we use Gram-Schmidt to make

it perpendicular to ~v1 as follows.

~v
(2)
1 = ~v′1 −

~v′T1 ~v1

‖~v1‖2
~v1 =

(
−1
0

)
+

1

2

(
1
−1

)
=

(
−1

2

−1
2

)
.

(c) First, we need to write ~u0 = c1~v1 + c2~v
(2)
1 .(

1 −1
2

−1 −1
2

)(
c1
c2

)
=

(
1
0

)
⇒ c1 =

1

2
, c2 = −1.

Let f(X) = (1 + eXt)−1. Then f ′(X) = teXt · (1 + eXt)−2. By the formula from the
handout,

~u(t) = (I + eAt)−1~u0

= c1f(λ)~v1 + c2
(
f(λ)~v

(2)
1 + f ′(λ)~v1

)
=

1

2

1

1 + e2t

(
1
−1

)
−
( 1

1 + e2t

(
−1

2

−1
2

)
+

te2t

(1 + e2t)2

(
1
−1

))
=

1

1 + e2t

(
1
0

)
+

te2t

(1 + e2t)2

(
−1
1

)
.

REMARK: One may notice that the first term is exactly 1
1+e2t~u0. This is because

the eigenvalues of the two eigenvectors are the same. The second term is contributed
by the generalized eigenvector ~v

(2)
1 , but it is a multiple of ~v1.

(d) Continuing with the calculation above, we have

~uk = Ak~u0 = c1λ
k~v1 + c2

(
λk~v

(2)
1 + kλk−1~v1

)
=

1

2
2k
(

1
−1

)
−
(

2k
(
−1

2

−1
2

)
+ k2k−1

(
1
−1

))
= 2k

(
1
0

)
+ k · 2k−1

(
−1
1

)
= 2k−1

(
2− k
k

)
.
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(e) Since Akv1 = λkv1 and Akv
(2)
1 = λkv

(2)
1 + kλk−1v1, we have

Ak
(

1 −1
2

−1 −1
2

)
=

(
2k −1

2
2k + k · 2k−1

−2k −1
2
2k − k · 2k−1

)
= 2k−1

(
2 k − 1
−2 −k − 1

)
.

Hence,

Ak = 2k−1

(
2 k − 1
−2 −k − 1

)(
1 −1

2

−1 −1
2

)−1

= 2k−1

(
2 k − 1
−2 −k − 1

)(
1
2
−1

2

−1 −1

)
= 2k−1

(
2− k −k
k k + 2

)
.

(f) If we change s to s + 0.0001, then to get the eigenvalue, we need to solve
λ2 − 4λ + 4 − 0.0001 = 0, that is (λ − 2)2 = 0.0001. We get λ1 = 2.01 and
λ2 = 1.99. Since λ1 > λ, ‖~uk‖ is going to grow more quickly with k than when A
was defective. More precisely, since an exponential always grows faster than any
polynomial, 2.01k = 1.05k2k grows faster than k2k.

Problem 2: True or false, with a good reason:

(a) A can’t be similar to −A unless A = 0.

(b) An invertible matrix can’t be similar to a singular matrix.

(c) A symmetric matrix can’t be similar to a nonsymmetric matrix.

(d) Any diagonalizable matrix is similar to a Hermitian matrix.

(e) If B is invertible, then AB and BA have the same eigenvalues.

Solution (25 points = 5+5+5+5+5)

(a) False. For example, A =

(
1 0
0 −1

)
is similar to −A =

(
−1 0
0 1

)
as follows.

(
0 1
1 0

)−1(
1 0
0 −1

)(
0 1
1 0

)
=

(
−1 0
0 1

)
= −A.

Note that −A flips the signs of the eigenvalues, but this doesn’t mean it is not
similar since the eigenvalues could come in positive and negative pairs.

3



Another counter-example would be any anti-symmetric A =

(
0 1
−1 0

)
. It is

similar to −A =

(
0 −1
1 1

)
as follows.

(
0 1
1 0

)−1(
0 −1
1 0

)(
0 1
1 0

)
=

(
0 1
−1 0

)
= −A.

(b) True. All eigenvalues of an invertible matrix are nonzero, whereas a singular
matrix has at least one eigenvalue 0. They cannot be similar to each other.

(c) False. For example,(
1 1
0 1

)−1(
2 0
0 1

)(
1 1
0 1

)
=

(
2 1
0 1

)
.

In fact, (even) if A is symmetric, MAM−1 is not generally symmetric unless M is
orthogonal.

(d) False. For example, the matrix A = (1+i). It is not similar to any Hermitian
matrix. More generally, a Hermitian matrix always has real eigenvalues, whereas a
diagonalizable matrix can have any type of eigenvalues.

(e) True. This is because AB = B−1(BA)B is similar to BA. They have the
same eigenvalues.

Problem 3: This question concerns the second-order ODE y′′+10y′+25y = 0 with
the initial conditions y(0) = 2, y′(0) = 3.

(a) Convert this into a matrix equation d~u/dt = A~u by u1 = y, u2 = y′. The
initial condition is ~u(0) = .

(b) Find the eigenvalues and eigenvectors of A. A is a matrix.

(c) Find the solution ~u(t) = eAt~u(0), and hence the solution y(t).

Solution (15 points = 5+5+5)
(a) We can write

y′ = y′

y′′ = −25y − 10y′
⇒ d~u

dt
=

(
y′

y′′

)
=

(
0 1
−25 −10

)(
y
y′

)
.
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That is A =

(
0 1
−25 −10

)
. The initial condition is ~u(0) =

(
2
3

)
.

(b) Solving det(A− λI) = λ2 + 10λ+ 25 = 0 gives λ = −5, a double root.

A− λI =

(
5 1
−25 −5

)
⇒ ~v1 =

(
1
−5

)
.

So, A is a defective matrix.
(c) We need to find the second eigenvector by solving

(A− λI)~v
(2)
1 = ~v1 ;

(
5 1
−25 −5

)
~v

(2)
1 =

(
1
−5

)
.

We can find a particular solution ~v
(2)
1 =

(
0
1

)
. Here, we could have used the Gram-

Schmidt to find the a solution that is perpendicular to ~v1. However, in order to find
the solution ~u(t) = eAt~u(0), it suffices to use any particular solution. Besides the
computation involving Gram-Schmidt tends to be complicated.

We need to write ~u(0) in terms of ~v1 and ~v
(2)
1 .(

1 0
−5 1

)(
c1
c2

)
=

(
2
3

)
⇒ c1 = 2, c2 = 13.

Thus, we have

~u(t) = eAt~u0

= c1e
λt~v1 + c2

(
eλt~v

(2)
1 + teλt~v1

)
= 2e−5t

(
1
−5

)
+ 13

(
e−5t

(
0
1

)
+ te−5t

(
1
−5

))
= e−5t

(
2 + 13t
3− 65t

)
.

In particular, y(t) = (13t+ 2)e−5t.

Problem 4: Suppose that λ1 is a double root of det(A − λ1I) for some A, but
that N(A − λ1I) is one dimensional, the span of a single eigenvector ~x1. A is thus
defective. It turns out that (A−λ1I)2 must always have a two-dimensional nullspace
if λ1 is a double root. Let ~y be a vector in the nullspace of (A − λ1I)2 that is not
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in N(A− λ1I). In what nullspace is (A− λ1I)~y? Hence, (A− λ1I)~y is proportional
to .

Solution (10 points)
Since ~y ∈ N

(
(A− λ1I)2

)
, (A− λ1I)2~y = 0. Hence, (A− λ1I)

(
(A− λ1I)~y

)
= 0.

In another word, (A− λ1I)~y ∈ N(A− λ1I) the nullspace of A− λ1I. Moreover, we
know that N(A− λ1I) is one dimensional, the span of a single eigenvector ~x1. This
forces (A − λ1I)~y to be proportional to ~x1 (and the ratio is nonzero, otherwise ~y
itself would be in the nullspace of A− λ1I, leading to a contradiction.)

Problem 5: This is a Matlab problem using the SVD to perform image compression.
This is not the best technique for image compression, but it showcases the SVD’s
ability to extract the important information from a matrix.

(a) Download http://jdj.mit.edu/~stevenj/strang.jpg, a grayscale image of
a familiar fellow, to the directory that you launch Matlab from (e.g. your
home directory on Athena). Each pixel is stored as a number from 0 (black)
to 255 (white), so the image can be interpreted as a matrix A (in this case, a
404× 303 matrix). Read it into Matlab and display it with the commands:

A = flipud(double(imread(’strang.jpg’)));

pcolor(A); shading interp; colormap(’gray’); axis equal

(b) Now, compute the SVD A = UΣV T using Matlab, create a new figure, and
plot the distribution of singular values σi (the diagonals of Σ) on a log scale:

[U,S,V] = svd(A);

figure

semilogy(diag(S), ’o’);

xlabel(’index of singular value’); ylabel(’singular values’);

(c) Now, let’s see what happens if we throw out all but the biggest 50 singular
values, just setting the other ones to zero to make a new matrix S2:

S2 = S * diag([ones(1,50), zeros(1,size(S,2)-50)]);

figure

pcolor(U*S2*V’); shading interp; colormap(’gray’); axis equal

It should still look a lot like the original image: most of the information is in
the biggest singular values and the corresponding singular vectors!
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(d) Replace the two 50’s in the previous commands to a smaller number, to keep
fewer than 50 singular values. How small can you go before the image becomes
unrecognizable? Which details of the image are the last to be blurred away?

Solution (15 points)

>> A = flipud(double(imread(’strang.jpg’)));

>> pcolor(A); shading interp; colormap(’gray’); axis equal

>> [U,S,V] = svd(A);

>> figure

>> semilogy(diag(S), ’o’);

>> xlabel(’index of singular value’); ylabel(’singular values’);
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>> S2 = S * diag([ones(1,50), zeros(1,size(S,2)-50)]);

>> figure

>> pcolor(U*S2*V’); shading interp; colormap(’gray’); axis equal

Next, we replace 50 by n =40, 35, 30, 25, 20, 15, 12, 10, 8, 6, 4 and print out
the pictures.

n = 40 n = 35
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n = 30 n = 25

n = 20 n = 15

n = 12 n = 10
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n = 8 n = 6

n = 4
The singular values are dominated by the first 50 or, with the rest an order

of magnitude or more smaller. This is an empirical observation (which is related
to certain statistical properties), that for many images the singular values fall off
roughly exponentially as shown in the graph, and is why the image can be roughly
reconstructed from just a few of the largest singular values.

Problem 6: Find the eigenvalues and orthonormal eigenvectors of ATA and AAT

for the Fibonacci matrix A =

(
1 1
1 0

)
. Construct the singular value decomposition

and verify that A = UΣV T.

Solution (15 points)
In this case, we are lucky that A is symmetric. So, the SVD is the same as the

decomposition S−1ΣS if we take S to be orthogonal. But in order to illustrate the
process of SVD, we write out the steps for treating general matrix A.

Step 1: Find the eigenvalues and orthonormal eigenvectors of ATA =

(
2 1
1 1

)
.

10



Solving det(ATA− λI) = λ2 − 3λ+ 1 gives λ = 1
2
(3±

√
5).

λ1 =
3 +
√

5

2
, A− λ1I =

(
1−
√

5
2

1

1 −1+
√

5
2

)
, u′1 =

(
1+
√

5
2

1

)
.

We normalize it to get u1 =
u′
1

‖u′
1‖

=
(√

5+
√

5
2

)−1
(

1+
√

5
2

1

)
≈
(

0.8507
0.5257

)
. To get the

other (normalized eigenvector), one can simply change the sign before
√

5 and get

u2 =
(√

5−
√

5
2

)−1
(

1−
√

5
2

1

)
≈
(
−0.5257
0.8507

)
.

Step 2: Find the eigenvalues and orthonormal eigenvectors of AAT =

(
2 1
1 1

)
.

Since A is symmetric in our case, we will get the same answer, that is

v1 =
(√5 +

√
5

2

)−1
(

1+
√

5
2

1

)
≈
(

0.8507
0.5257

)

v2 =
(√5−

√
5

2

)−1
(

1−
√

5
2

1

)
≈
(
−0.5257
0.8507

)
.

Step 3: The Singular Value Decomposition is

A = UΣV T ≈
(

0.8507 −0.5207
0.5257 0.8507

)(
1.6180 0

0 −0.6180

)(
0.8507 0.5207
−0.5257 0.8507

)
Here the singular values (the diagonal of Σ) are the square roots of the eigenvalues

of ATA and AAT , namely,
√

3+
√

5
2

= 1+
√

5
2

and
√

3−
√

5
2

= 1−
√

5
2

.

Problem 7: If A = QR with an orthogonal matrix Q (A is square), the SVD of A
is almost the same as the SVD of R. Which of the three matrices U , Σ, and V must
be different for A and R?

Solution (10 points)
If A = UΣV T is the SVD for A, then QR = UΣV T. Since Q is orthogonal,

Q−1 = QT and hence R = (QTU)ΣV T. Note that (QTU)T(QTU) = UTQQTU =
UTU = I. This implies that QTU is an orthogonal matrix. Hence, R = (QTU)ΣV T

is an SVD for R.

REMARK: The condition that A is square ensures that Q is a square matrix in
the QR factorization.
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If A were not square, we would still have QTQ = I. However, multiplying QT by
both sides of the SVD, but then you would get QTU , which is not an square matrix
and hence not orthogonal and hence not the SVD (at least in the form learned in
class).

Problem 8: Suppose ~u1, . . . , ~un and ~v1, . . . , ~vn are two orthonormal bases for Rn.
Write a formula for the matrix A that transforms each ~vj into ~uj to give A~v1 = ~u1,
..., A~vn = ~un. A is a/an matrix (hint: check ATA).

Solution (10 points)
If we let U be the matrix whose columns are ~u1, . . . ~un and Let V be the matrix

whose columns are ~v1, . . . , ~vn. Then, the condition A~v1 = ~u1, ..., A~vn = ~un says
exactly AV = U . Hence A = UV −1 = UV T. A is an orthogonal matrix because
ATA = (UV T)TUV T = V UTUV T = V V T = I.

Note also that A = UIV T is the SVD for A, where the singular value matrix
Σ = I.
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